Online Monitoring of Metric Temporal Logic

  • Hsi-Ming Ho
  • Joël Ouaknine
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8734)


Current approaches to monitoring real-time properties suffer either from unbounded space requirements or lack of expressiveness. In this paper, we adapt a separation technique enabling us to rewrite arbitrary MTL formulas into LTL formulas over a set of atoms comprising bounded MTL formulas. As a result, we obtain the first trace-length independent online monitoring procedure for full MTL in a dense-time setting.


Model Check Temporal Logic Linear Temporal Logic Unbounded Operator Online Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. Journal of the ACM 43(1), 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.: Back to the future: towards a theory of timed regular languages. In: Proceedings of FOCS 1992, pp. 177–186. IEEE Computer Society Press (1992)Google Scholar
  3. 3.
    Armoni, R., Korchemny, D., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: Deterministic dynamic monitors for linear-time assertions. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV 2006. LNCS, vol. 4262, pp. 163–177. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Baldor, K., Niu, J.: Monitoring dense-time, continuous-semantics, metric temporal logic. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 245–259. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric first-order temporal properties. In: Proceedings of FSTTCS 2008. LIPIcs, vol. 2, pp. 49–60. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2008)Google Scholar
  6. 6.
    Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Bauer, A., Küster, J., Vegliach, G.: From propositional to first-order monitoring. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Birget, J.C.: State-complexity of finite-state devices, state compressibility and incompressibility. Mathematical Systems Theory 26(3), 237–269 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Chai, M., Schlingloff, H.: A rewriting based monitoring algorithm for TPTL. In: Proceedings of CS&P 2013. CEUR Workshop Proceedings, vol. 1032, pp. 61–72. (2013)Google Scholar
  11. 11.
    D’Souza, D., Matteplackel, R.: A clock-optimal hierarchical monitoring automaton construction for MITL. Tech. Rep. 2013-1, Department of Computer Science and Automation, Indian Institute of Science (2013),
  12. 12.
    Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Finkbeiner, B., Kuhtz, L.: Monitor circuits for LTL with bounded and unbounded future. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 60–75. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Geilen, M.: On the construction of monitors for temporal logic properties. Electronic Notes in Theoretical Computer Science 55(2), 181–199 (2001)CrossRefGoogle Scholar
  15. 15.
    Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: A case study in the android operating system. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 296–311. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Ho, H.M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic (2014), full version:
  17. 17.
    Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness of metric temporal logic. In: Proceedings of LICS 2013, pp. 349–357. IEEE Computer Society Press (2013)Google Scholar
  18. 18.
    Kini, D.R., Krishna, S.N., Pandya, P.K.: On construction of safety signal automata for MITL[U,S] using temporal projections. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 225–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  20. 20.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of Logic and Algebraic Programming 78(5), 293–303 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: Past, present, future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety, vol. 2. Springer (1995)Google Scholar
  25. 25.
    Markey, N., Raskin, J.: Model checking restricted sets of timed paths. Theoretical Computer Science 358(2-3), 273–292 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ničković, D., Piterman, N.: From MTL to deterministic timed automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Ouaknine, J., Worrell, J.: Safety metric temporal logic is fully decidable. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    de Matos Pedro, A., Pereira, D., Pinho, L.M., Pinto, J.S.: A compositional monitoring framework for hard real-time systems. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 16–30. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  29. 29.
    Sokolsky, O., Havelund, K., Lee, I.: Introduction to the special section on runtime verification. International Journal on Software Tools for Technology Transfer 14(3), 243–247 (2011)CrossRefGoogle Scholar
  30. 30.
    Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications. Electronic Notes in Theoretical Computer Science 113, 145–162 (2005)CrossRefGoogle Scholar
  31. 31.
    Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hsi-Ming Ho
    • 1
  • Joël Ouaknine
    • 1
  • James Worrell
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations