Skip to main content

Dyslipidemia: Relationship to Insulin Resistance, Fatty Liver, and Sub-Clinical Atherosclerosis

  • Chapter
  • First Online:
Lipid Management

Abstract

Insulin resistance and dyslipidemias are clinical hallmarks of cardiometabolic and fatty liver disease, however the underlying pathophysiology is not yet fully understood. Therefore, there is considerable interest in adequately defining risk factors by age, sex, and race/ethnicity in an effort to design appropriate interventions and treatments for obesity-related diseases. This chapter begins with a background on the epidemiology of obesity, type 2 diabetes, and subclinical atherosclerosis. By focusing on the distribution of body, where we will also emphasize hypothesized mechanisms behind insulin resistance, dyslipidemia and its relationship to atherosclerosis progression. Finally, we will discuss advanced imaging methods and treatments used to identify and treat these obesity-related metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.

    CAS  PubMed  Google Scholar 

  2. Wang Y. Disparities in Pediatric Obesity in the United States. Adv Nutr: Int Rev J. 2011;2(1):23–31.

    CAS  Google Scholar 

  3. Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42(6):563–70.

    PubMed  Google Scholar 

  4. Gurka MJ, Ice CL, Sun SS, Deboer MD. A confirmatory factor analysis of the metabolic syndrome in adolescents: an examination of sex and racial/ethnic differences. Cardiovasc Diabetol. 2012;11:128.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. The relation of childhood BMI to adult adiposity: the Bogalusa Heart Study. Pediatrics. 2005;115(1):22–7.

    PubMed  Google Scholar 

  6. NCEP. Detection, Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  7. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24(4):683–9.

    CAS  PubMed  Google Scholar 

  8. Isomaa B, Henricsson M, Almgren P, Tuomi T, Taskinen MR, Groop L. The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia. 2001;44(9):1148–54.

    CAS  PubMed  Google Scholar 

  9. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

    CAS  PubMed  Google Scholar 

  10. Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med. 1993;44:121–31.

    CAS  PubMed  Google Scholar 

  11. Saydah SH, Loria CM, Eberhardt MS, Brancati FL. Subclinical states of glucose intolerance and risk of death in the U.S. Diabetes Care. 2001;24(3):447–53.

    CAS  PubMed  Google Scholar 

  12. Franssen R, Monajemi H, Stroes ESG, Kastelein JJP. Obesity and dyslipidemia. Med Clin N Am. 2011;95(5):893–02.

    CAS  PubMed  Google Scholar 

  13. Maligie M, Crume T, Scherzinger A, Stamm E, Dabelea D. Adiposity, fat patterning, and the metabolic syndrome among diverse youth: the EPOCH study. J Pediatr. 2012;161(5):875–80.

    PubMed Central  PubMed  Google Scholar 

  14. Nazare J-A, Smith JD, Borel A-L, Haffner SM, Balkau B, Ross R, et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the international study of prediction of intra-abdominal adiposity and its relationship With cardiometabolic risk/intra-abdominal adiposity. Am J Clin Nutr. 2012;96(4):714–26.

    CAS  PubMed  Google Scholar 

  15. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56(1):16–3.

    CAS  PubMed  Google Scholar 

  16. Nobili V, Bedogni G, Berni Canani R, Brambilla P, Cianfarani S, Pietrobelli A, et al. The potential role of fatty liver in paediatric metabolic syndrome: a distinct phenotype with high metabolic risk? Pediatr Obes. 2012;7(6):e75–80. (Review)

    CAS  PubMed  Google Scholar 

  17. Bray GA. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv Nutr Int Rev J. 2013;4(2):220–5.

    CAS  Google Scholar 

  18. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79(4):537–43.

    CAS  PubMed  Google Scholar 

  19. Bray GA, Popkin BM. Calorie-sweetened beverages and fructose: what have we learned 10 years later. Pediatr Obes. 2013;8(4):242–8.

    CAS  PubMed  Google Scholar 

  20. Khitan Z, Kim DH. Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metabolism. 2013;2013:682673.

    Google Scholar 

  21. Lin W-T, Huang H-L, Huang M-C, Chan T-F, Ciou S-Y, Lee C-Y, et al. Effects on uric acid, body mass index and blood pressure in adolescents of consuming beverages sweetened with high-fructose corn syrup. Int J Obes (Lond). 2013;37(4):532–9.

    CAS  Google Scholar 

  22. Kavanagh K, Wylie AT, Tucker KL, Hamp TJ, Gharaibeh RZ, Fodor AA, et al. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. Am J Clin Nutr. 2013;98:349–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Nomura K, Yamanouchi T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem. 2012;23(3):203–8.

    CAS  PubMed  Google Scholar 

  24. Welsh JA, Karpen S, Vos MB. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988–1994 to 2007–2010. J Pediatr. 2013;162(3):496–500.e1.

    PubMed Central  PubMed  Google Scholar 

  25. Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab. 2005;288(2):E462–8.

    CAS  PubMed  Google Scholar 

  26. Byrne CD. Ectopic fat, insulin resistance and non-alcoholic fatty liver disease. Proc Nutr Soc. 2013;72(4):412–9.

    CAS  PubMed  Google Scholar 

  27. Novaković T, Inić Kostić B, Milinić S, Jovićević L, Dzeletović G. Cardiovascular disease risk factors in patients with non-alcoholic fatty liver disease. Medicinski pregled. 2013;66(1–2):24–31.

    PubMed  Google Scholar 

  28. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijarvi A, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87(7):3023–8.

    CAS  PubMed  Google Scholar 

  29. DeFilippis AP, Blaha MJ, Martin SS, Reed RM, Jones SR, Nasir K, et al. Nonalcoholic fatty liver disease and serum lipoproteins: the multi-ethnic study of atherosclerosis. Atherosclerosis. 2013;227(2):429–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Goran MI, Walker R, Lê K-A, Mahurkar S, Vikman S, Davis JN, et al. Effects of PNPLA3 on liver fat and metabolic profile in Hispanic children and adolescents. Diabetes. 2010;59(12):3127–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Maggio ABR, Mueller P, Wacker J, Viallon M, Belli DC, Beghetti M, et al. Increased pancreatic fat fraction is present in obese adolescents with metabolic syndrome. J Pediatr gastroenterol Nutr. 2012;54(6):720–6.

    CAS  PubMed  Google Scholar 

  33. Patel NS, Peterson MR, Brenner DA, Heba E, Sirlin C, Loomba R. Association between novel MRI-estimated pancreatic fat and liver histology-determined steatosis and fibrosis in non-alcoholic fatty liver disease. Aliment Pharmacol Amp Ther. 2013;37(6):630–9.

    CAS  Google Scholar 

  34. Ou H-Y, Wang C-Y, Yang Y-C, Chen M-F, Chang C-J. The Association between Nonalcoholic Fatty Pancreas Disease and Diabetes. PLoS ONE. 2013;8(5):e62561.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Lê K-A, Ventura EE, Fisher JQ, Davis JN, Weigensberg MJ, Punyanitya M, et al. Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diabetes Care. 2011;34(2):485–90. (Comparative Study)

    PubMed Central  PubMed  Google Scholar 

  36. Szczepaniak LS, Victor RG, Mathur R, Nelson MD, Szczepaniak EW, Tyer N, et al. Pancreatic steatosis and its relationship to β-cell dysfunction in humans: racial and ethnic variations. Diabetes Care. 2012;35(11):2377–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Blankenhorn DH, Hodis HN. George Lyman duff memorial Lecture. Arterial imaging and atherosclerosis reversal. Arterioscler Thromb. 1994;14(2):177–92.

    CAS  PubMed  Google Scholar 

  38. Azen SP, Mack WJ, Cashin-Hemphill L, LaBree L, Shircore AM, Selzer RH, et al. Progression of coronary artery disease predicts clinical coronary events. Long-term follow-up from the cholesterol lowering atherosclerosis study. Circulation. 1996;93(1):34–41.

    CAS  PubMed  Google Scholar 

  39. Vigen C, Hodis HN, Selzer RH, Mahrer PR, Mack WJ. Relation of progression of coronary artery atherosclerosis to risk of cardiovascular events (from the Monitored Atherosclerosis Regression Study). Am J Cardiol. 2005;95(11):1277–82.

    PubMed  Google Scholar 

  40. Berenson GS, Srinivasan SR, Bao W, Newman WP, 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338(23):1650–6.

    Google Scholar 

  41. Newman WP, 3rd, Freedman DS, Voors AW, Gard PD, Srinivasan SR, Cresanta JL, et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study. N Engl J Med. 1986;314(3):138–44.

    PubMed  Google Scholar 

  42. Mitchell BD, Haffner SM, Hazuda HP, Valdez R, Stern MP. The relation between serum insulin levels and 8-year changes in lipid, lipoprotein, and blood pressure levels. Am J Epidemiol. 1992;136(1):12–22.

    CAS  PubMed  Google Scholar 

  43. Davies MG, Hagen PO. Pathophysiology of vein graft failure: a review. Eur J Vasc Endovasc Surg. 1995;9(1):7–18.

    PubMed  Google Scholar 

  44. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999; 138(5 Pt 2):S419–20.

    CAS  PubMed  Google Scholar 

  45. Augst AD, Ariff B, Mc GTSA, Xu XY, Hughes AD. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am J Physiol Heart Circ Physiol. 2007;293(2):H1031–7.

    CAS  PubMed  Google Scholar 

  46. Quyyumi AA. Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med. 1998;105(1A):32S–9S.

    CAS  PubMed  Google Scholar 

  47. Ross R, Glomset JA. The pathogenesis of atherosclerosis (second of two parts). N Engl J Med. 1976;295(8):420–5.

    CAS  PubMed  Google Scholar 

  48. Ross R, Glomset JA. The pathogenesis of atherosclerosis (first of two parts). N Engl J Med. 1976;295(7):369–77.

    CAS  PubMed  Google Scholar 

  49. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.

    CAS  PubMed  Google Scholar 

  50. Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res. 1995;76(6):980–6.

    CAS  PubMed  Google Scholar 

  51. Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 2001;44(Suppl. 2):S14–21.

    PubMed  Google Scholar 

  52. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.

    CAS  PubMed  Google Scholar 

  53. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom prospective diabetes study (UKPDS: 23). BMJ. 1998;316(7134):823–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Mazzone T, Chait A, Plutzky J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet. 2008;371(9626):1800–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Luscher TF, Creager MA, Beckman JA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part II. Circulation. 2003;108(13):1655–61.

    PubMed  Google Scholar 

  56. Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003;108(12):1527–32.

    PubMed  Google Scholar 

  57. Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990;85(6):1844–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    CAS  PubMed  Google Scholar 

  59. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298(10):1180–8.

    CAS  PubMed  Google Scholar 

  60. Chao L, Marcus-Samuels B, Mason MM, Moitra J, Vinson C, Arioglu E, et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Invest. 2000;106(10):1221–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Cipolletta D FM, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012;486(7404):549–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Mahadik SR, Lele RD, Mehtalia SD, Deo SS, Parikh V. Regulation of adiponectin secretion in human subcutaneous and omental adipose tissue: effects of pioglitazone and endothelin-1: a pilot study. J Assoc Physicians India. 2013;61(4):244–8.

    PubMed  Google Scholar 

  63. Parkner T, Sorensen LP, Nielsen AR, Fischer CP, Bibby BM, Nielsen S, et al. Soluble CD163: a biomarker linking macrophages and insulin resistance. Diabetologia. 2013;55(6):1856–62.

    Google Scholar 

  64. Gokulakrishnan K, Deepa R, Mohan V, Gross MD. Soluble P-selectin and CD40 Llevels in subjects with prediabetes, diabetes mellitus, and metabolic syndrome–the Chennai Urban Rural Epidemiology Study. Metabolism. 2006;55(2):237–42.

    CAS  PubMed  Google Scholar 

  65. Bjorntorp P. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 1990;10(4):493–6.

    CAS  PubMed  Google Scholar 

  66. Bergman RN, Ader M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab. 2000;11(9):351–6.

    CAS  PubMed  Google Scholar 

  67. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, et al. Free fatty acid-induced insulin resistance is associated with activation of protein Kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999;48(6):1270–4.

    CAS  PubMed  Google Scholar 

  68. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103(2):253–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA. Effect of fatty acids on glucose production and utilization in man. J Clin Invest. 1983;72(5):1737–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

    CAS  PubMed  Google Scholar 

  71. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597–05.

    CAS  PubMed  Google Scholar 

  72. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes. 1985;34(9):938–41.

    CAS  PubMed  Google Scholar 

  73. Bucala R, Makita Z, Vega G, Grundy S, Koschinsky T, Cerami A, et al. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci USA. 1994;91(20):9441–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Posch K, Simecek S, Wascher TC, Jurgens G, Baumgartner-Parzer S, Kostner GM, et al. Glycated low-density lipoprotein attenuates shear stress-induced nitric oxide synthesis by inhibition of shear stress-activated L-arginine uptake in endothelial cells. Diabetes. 1999;48(6):1331–7.

    CAS  PubMed  Google Scholar 

  75. Frank AT, Zhao B, Jose PO, Azar KM, Fortmann SP, Palaniappan LP. Racial/Ethnic differences in Dyslipidemia patterns. Circulation. 2013;129:570–9.

    PubMed Central  PubMed  Google Scholar 

  76. Chang MH, Ned RM, Hong Y, Yesupriya A, Yang Q, Liu T, et al. Racial/ethnic variation in the association of lipid-related genetic variants with blood lipids in the US adult population. Circ Cardiovasc Genet. 2011;4(5):523–33.

    CAS  PubMed  Google Scholar 

  77. Weissglas-Volkov D, Aguilar-Salinas CA, Nikkola E, Deere KA, Cruz-Bautista I, Arellano-Campos O, et al. Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. J Med Genet. 2013;50(5):298–08.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5.

    CAS  PubMed  Google Scholar 

  79. Hodis HN, Mack WJ. Atherosclerosis imaging methods: assessing cardiovascular disease and evaluating the role of estrogen in the prevention of atherosclerosis. Am J Cardiol. 2002;89(12A):19E–27E; discussion 27E.

    CAS  PubMed  Google Scholar 

  80. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74(6):1399–06.

    CAS  PubMed  Google Scholar 

  81. Selzer RH, Mack WJ, Lee PL, Kwong-Fu H, Hodis HN. Improved common carotid elasticity and intima-media thickness measurements from computer analysis of sequential ultrasound frames. Atherosclerosis. 2001;154(1):185–93.

    CAS  PubMed  Google Scholar 

  82. Lamotte C, Iliescu C, Libersa C, Gottrand F. Increased intima-media thickness of the carotid artery in childhood: a systematic review of observational studies. Eur J Pediatr. 2011;170(6):719–29.

    PubMed  Google Scholar 

  83. Chambless LE, Folsom AR, Clegg LX, Sharrett AR, Shahar E, Nieto FJ, et al. Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol. 2000;151(5):478–87.

    CAS  PubMed  Google Scholar 

  84. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol. 1997;146(6):483–94.

    CAS  PubMed  Google Scholar 

  85. Kitamura A, Iso H, Imano H, Ohira T, Okada T, Sato S, et al. Carotid intima-media thickness and plaque characteristics as a risk factor for stroke in Japanese elderly men. Stroke. 2004;35(12):2788–94.

    PubMed  Google Scholar 

  86. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK, Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular health study collaborative research group. N Engl J Med. 1999;340(1):14–22.

    Google Scholar 

  87. Rosvall M, Janzon L, Berglund G, Engstrom G, Hedblad B. Incident coronary events and case fatality in relation to common carotid intima-media thickness. J Intern Med. 2005;257(5):430–7.

    CAS  PubMed  Google Scholar 

  88. Belcaro G, Nicolaides AN, Laurora G, Cesarone MR, De Sanctis M, Incandela L, et al. Ultrasound morphology classification of the arterial wall and cardiovascular events in a 6-year follow-up study. Arterioscler Thromb Vasc Biol. 1996;16(7):851–6.

    CAS  PubMed  Google Scholar 

  89. Lorenz MW, von Kegler S, Steinmetz H, Markus HS, Sitzer M. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke. 2006;37(1):87–92.

    PubMed  Google Scholar 

  90. Andersen CJ, Fernandez ML. Dietary strategies to reduce metabolic syndrome. Rev endocr & amp; metab disord. 2013;14(3):241–54.

    CAS  Google Scholar 

  91. Kirk E, Reeds DN, Finck BN, Mayurranjan SM, Mayurranjan MS, Patterson BW, et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology. 2009;136(5):1552–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Fabbrini E, Tamboli RA, Magkos F, Marks-Shulman PA, Eckhauser AW, Richards WO, et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology. 2010;139(2):448–55.

    PubMed Central  PubMed  Google Scholar 

  93. Ikramuddin S, Korner J, Lee W-J, Connett JE, Inabnet WB, Billington CJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the diabetes surgery study randomized clinical trial. JAMA. 2013;309(21):2240–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Sanz Y, Santacruz A, Gauffin P. Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc. 2010;69(3):434–41.

    CAS  PubMed  Google Scholar 

  95. Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Asp Med. 2013;34(1):39–58. (Review)

    CAS  Google Scholar 

  96. Basu A, Devaraj S, Jialal I. Dietary factors that promote or retard inflammation. Arterioscler Thromb Vasc Biol. 2006;26(5):995–1001.

    CAS  PubMed  Google Scholar 

  97. Herder C, Peltonen M, Koenig W, Sutfels K, Lindstrom J, Martin S, et al. Anti-inflammatory effect of lifestyle changes in the finnish diabetes prevention study. Diabetologia. 2009;52(3):433–42.

    CAS  PubMed  Google Scholar 

  98. Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, Schindler K, et al. Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am J Clin Nutr. 2012;96(5):1137–49.

    CAS  PubMed  Google Scholar 

  99. Iacono A, Raso GM, Canani RB, Calignano A, Meli R. Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. J Nutr Biochem. 2011;22(8):699–11.

    CAS  PubMed  Google Scholar 

  100. Asemi Z, Zare Z, Shakeri H, Sabihi SS, Esmaillzadeh A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann Nutr Metab. 2013;63(1–2):1–9.

    CAS  PubMed  Google Scholar 

  101. Siddiqi SS, Misbahuddin, Ahmad F, Rahman SZ, Khan AU. Dyslipidemic drugs in metabolic syndrome. Indian J Endocrinol Metab. 2013;17(3):472–9.

    Google Scholar 

  102. Durazzo M, Belci P, Collo A, Grisoglio E, Bo S. Focus on therapeutic strategies of nonalcoholic Fatty liver disease. Int J Hepatol. 2012;2012:464706.

    PubMed Central  PubMed  Google Scholar 

  103. Hatzitolios A, Savopoulos C, Lazaraki G. Efficacy of omega-3 fatty acids, atorvastatin and orlistat in non-alcoholic fatty liver disease with dyslipidemia. Indian J Gastroenterol. 2004;23(4):131–4.

    Google Scholar 

  104. Promrat K, Kleiner DE, Niemeier HM, Jackvony E, Kearns M, Wands JR, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology. 2010;51(1):121–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, et al. Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2014;39(11):1276–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Han Y, Shi JP, Ma AL, Xu Y, Ding XD, Fan JG. Randomized, vitamin E-controlled trial of bicyclol plus metformin in non-alcoholic fatty liver disease patients with impaired fasting glucose. Clin Drug Investig. 2014;34(1):1–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia M. Toledo-Corral PhD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Toledo-Corral, C., Alderete, T., Goran, M. (2015). Dyslipidemia: Relationship to Insulin Resistance, Fatty Liver, and Sub-Clinical Atherosclerosis. In: Yassine, H. (eds) Lipid Management. Springer, Cham. https://doi.org/10.1007/978-3-319-11161-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11161-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11160-5

  • Online ISBN: 978-3-319-11161-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics