Advertisement

Spatiotemporal Analysis of Brain Functional Connectivity

  • Ahmad Mheich
  • Mahmoud Hassan
  • Olivier Dufor
  • Mohamad Khalil
  • Claude Berrou
  • Fabrice Wendling
Part of the IFMBE Proceedings book series (IFMBE, volume 45)

Abstract

Brain functions are based on interactions between neural assemblies distributed within and across distinct cerebral regions. During cognitive tasks, these interactions are dynamic and take place at the millisecond time scale. In this context, the excellent temporal resolution (<1 ms) of the Electroencephalographic –EEG- signals allows for detection of very short-duration events and therefore, offers the unique opportunity to follow, over time, the dynamic properties of cognitive processes.

In this paper we propose a new algorithm to track the functional brain connectivity dynamics. During picture recognition and naming task, this algorithm aims at segmenting high resolution (hr) EEG functional connectivity microstates. The proposed algorithm is based on the K-means clustering of the connectivity graphs obtained from the Phase Locking Values (PLV). Results show that the algorithm is able to track the brain functional connectivity dynamics during picture naming task.

Keywords

High resolution EEG PLV K-means functional connectivity dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ahmad Mheich
    • 1
    • 2
    • 3
  • Mahmoud Hassan
    • 1
    • 3
  • Olivier Dufor
    • 4
  • Mohamad Khalil
    • 2
  • Claude Berrou
    • 4
  • Fabrice Wendling
    • 1
    • 3
  1. 1.INSERM, U1099RennesFrance
  2. 2.AZM Center-EDSTLebanese UniversityTripoliLebanon
  3. 3.Université de Rennes 1, LTSIRennesFrance
  4. 4.UMR CNRS Lab-STICCTélécom Bretagne (Institut Mines-Télécom)BrestFrance

Personalised recommendations