Skip to main content

A Comparison of Multiple Genome-Wide Recombination Maps in Apis mellifera

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 109)

Abstract

Increasingly, studies demonstrate significant intra-specific variation in genome-wide recombination rates, supporting the notion that local rates of meiotic recombination are evolving. The honey bee, Apis mellifera, exhibits the highest rate of recombination across the genome among multicellular animals. Multiple linkage maps have been constructed and agree on the overall high recombination rate but local rates have not been compared in detail. Here, we compared eight genome-wide recombination maps at different scales to assess how they relate to each other. We found that variation from a 50 to 1,000 kbp scale does not systematically affect the moderate correlations among the recombination maps. Individual chromosomes differed from each other in how much recombination rates were conserved but no apparent relation to chromosome size or average recombination existed. Finally, the overall similarities among maps related more to methodological than to mapping population coalescence. Therefore, recombination maps that were constructed using different methods should be compared with caution and results that are derived from such multiple data sets should prove more robust than analyses of single maps, irrespective of intra-specific variation in recombination rates.

Keywords

  • Window Size
  • Mapping Population
  • Recombination Rate
  • Meiotic Recombination
  • High Recombination Rate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11125-4_10
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-11125-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. Arechavaleta-Velasco ME, Alcala-Escamilla K, Robles-Rios C, Tsuruda JM, Hunt GJ (2012) Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites. PLoS One 7:e47269

    CrossRef  Google Scholar 

  2. Baker BS, Carpenter ATC, Esposito MS, Esposito RE, Sandler L (1976) The genetic control of meiosis. Ann Rev Genet 10:53–134

    CrossRef  Google Scholar 

  3. Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF, Schlipalius D, Mougel F, Emore C, Rueppell O, Sirvio A, Guzman-Novoa E, Hunt G, Solignac M, Page RE (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16:1339–1344

    CrossRef  Google Scholar 

  4. Comeron JM, Ratnappan R, Bailin S (2012) The many landscapes of recombination in Drosophila melanogaster. PLoS Genet 8:e1002905

    CrossRef  Google Scholar 

  5. Coop G, Przeworski M (2007) An evolutionary view of human recombination. Nat Rev Genet 8:23–34

    CrossRef  Google Scholar 

  6. Coop G, Wen XQ, Ober C, Pritchard JK, Przeworski M (2008) High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395–1398

    CrossRef  Google Scholar 

  7. Dixon L, Kuster R, Rueppell O (2014) Reproduction, social behavior, and aging trajectories in honeybee workers. AGE 36:89–101

    CrossRef  Google Scholar 

  8. Graham AM, Munday MD, Kaftanoglu O, Page RE Jr, Amdam GV, Rueppell O (2011) Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.). BMC Evol Biol 11:95

    Google Scholar 

  9. Hey J, Kliman RM (2002) Interactions between natural selection, recombination and gene density in the genes of drosophila. Genetics 160:595–608

    Google Scholar 

  10. Ihle KE, Rueppell O, Page RE, Amdam GV (unpublished) QTL for ovary size and juvenile hormone response to Vg-RNAi knockdown. J Hered

    Google Scholar 

  11. Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538

    CrossRef  Google Scholar 

  12. Kent CF, Minaei S, Harpur BA, Zayed A (2012) Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc Natl Acad Sci USA 109:18012–18017

    CrossRef  Google Scholar 

  13. Kulathinal RJ, Bennettt SM, Fitzpatrick CL, Noor MAF (2008) Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence. Proc Natl Acad Sci USA 105:10051–10056

    CrossRef  Google Scholar 

  14. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324

    CrossRef  Google Scholar 

  15. Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P (2010) Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327:876–879

    CrossRef  Google Scholar 

  16. Nachman MW (2002) Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev 12:657–663

    CrossRef  Google Scholar 

  17. Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 3:252–261

    CrossRef  Google Scholar 

  18. Rueppell O, Metheny JD, Linksvayer TA, Fondrk MK, Page RE Jr, Amdam GV (2011) Genetic architecture of ovary size and asymmetry in European honeybee workers. Heredity 106:894–903

    CrossRef  Google Scholar 

  19. Rueppell O, Meier S, Deutsch R (2012) Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures. PLoS One 7:e47220

    CrossRef  Google Scholar 

  20. Smukowski CS, Noor MAF (2011) Recombination rate variation in closely related species. Heredity 107:496–508

    CrossRef  Google Scholar 

  21. Solignac M, Mougel F, Vautrin D, Monnerot M, Cornuet JM (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol 8:R66

    CrossRef  Google Scholar 

  22. Stevison LS, Noor MAF (2010) Genetic and evolutionary correlates of fine-scale recombination rate variation in Drosophila persimilis. J Mol Evol 71:332–345

    CrossRef  Google Scholar 

  23. Tsuruda JM, Harris JW, Bourgeois L, Danka RG, Hunt GJ (2012) High-resolution linkage analyses to identify genes that influence Varroa Sensitive Hygiene behavior in honey bees. PLoS One 7:e48276

    CrossRef  Google Scholar 

  24. Ubeda F, Wilkins JF (2011) The Red Queen theory of recombination hotspots. J Evol Biol 24:541–553

    CrossRef  Google Scholar 

  25. Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD, Maleszka R, Robertson HM, Weaver DB, Beye M, Bork P, Elsik CG, Hartfelder K, Hunt GJ, Zdobnov EM, Amdam GV, Bitondi MMG, Collins AM, Cristino AS, Lattorff HMG, Lobo CH, Moritz RFA, Nunes FMF, Page RE, Simoes ZLP, Wheeler D, Carninci P, Fukuda S, Hayashizaki Y, Kai C, Kawai J, Sakazume N, Sasaki D, Tagami M, Albert S, Baggerman G, Beggs KT, Bloch G, Cazzamali G, Cohen M, Drapeau MD, Eisenhardt D, Emore C, Ewing MA, Fahrbach SE, Foret S, Grimmelikhuijzen CJP, Hauser F, Hummon AB, Huybrechts J, Jones AK, Kadowaki T, Kaplan N, Kucharski R, Leboulle G, Linial M, Littleton JT, Mercer AR, Richmond TA, Rodriguez-Zas SL, Rubin EB, Sattelle DB, Schlipalius D, Schoofs L, Shemesh Y, Sweedler JV, Velarde R, Verleyen P, Vierstraete E, Williamson MR, Ament SA, Brown SJ, Corona M, Dearden PK, Dunn WA, Elekonich MM, Fujiyuki T, Gattermeier I, Gempe T, Hasselmann M, Kadowaki T, Kage E, Kamikouchi A, Kubo T, Kucharski R, Kunieda T, Lorenzen MD, Milshina NV, Morioka M, Ohashi K, Overbeek R, Ross CA, Schioett M, Shippy T, Takeuchi H, Toth AL, Willis JH, Wilson MJ, Gordon KHJ, Letunic I, Hackett K et al (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    CrossRef  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the UNCG Social Insect lab and the Math-Bio working group. The work was funded by the National Science Foundation (grants DMS 0850465 and DBI 0926288) and additionally supported by the National Institutes of Health (NIGMS grant R15GM102753).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Rueppell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ross, C., DeFelice, D., Hunt, G., Ihle, K., Rueppell, O. (2015). A Comparison of Multiple Genome-Wide Recombination Maps in Apis mellifera . In: Rychtář, J., Chhetri, M., Gupta, S., Shivaji, R. (eds) Collaborative Mathematics and Statistics Research. Springer Proceedings in Mathematics & Statistics, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-11125-4_10

Download citation