Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 355))

Abstract

Prediction of drug–target interactions (DTIs) plays an important role in the drug discovery process. Unfortunately, experimental determination of interactions between drug compounds and target proteins remains a challenging task. Current available heterogeneous data motivate us to develop an effective data integration approach to exploit intrinsic correlations of known interactions between drugs and targets and to predict new interactions. We propose an ensemble learning approach to integrate previously developed methods and to improve the prediction performance. In particular, our algorithm employs a stacking framework, which uses a support vector machine (SVM) classifier as the meta learner to achieve better prediction results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The dataset can be downloaded from http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.

References

  1. Yamanishi Y, Kotera M, Kanehisa M, Goto S. Similarity-based machine learning methods for predicting drug–target interactions: a brief review. Brief Bioinform. 2013. doi:10.1093/bib/bbt056, URL: http://bib.oxfordjournals.org/content/early/2013/08/10/bib.bbt056.abstract.

  2. Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, et al. Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol. 2007;25(1):71–5.

    Google Scholar 

  3. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.

    Google Scholar 

  4. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007;25(2):197–206.

    Google Scholar 

  5. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas A I, Hufeisen S J, et al. Predicting new molecular targets for known drugs. Nature. 2009;462(7270):175–81.

    Article  Google Scholar 

  6. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics. 2008;24(13):i232–40.

    Google Scholar 

  7. Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012;8(5):e1002503.

    Google Scholar 

  8. Bleakley K, Yamanishi Y. Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics. 2009;25(18):2397–403.

    Article  Google Scholar 

  9. van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics. 2011;27(21):3036–43.

    Article  Google Scholar 

  10. Zhou ZH. Ensemble methods: foundations and algorithms. Boca Raton, FL: Chapman & Hall/CRC; 2012.

    Google Scholar 

  11. Ishida T, Kinoshita K. Prediction of disordered regions in proteins based on the meta approach. Bioinformatics. 2008;24(11):1344–8.

    Article  Google Scholar 

  12. Bujnicki JM, Elofsson A, Fischer D, Rychlewski L. Structure prediction meta server. Bioinformatics. 2001;17(8):750–1.

    Google Scholar 

  13. Ginalski K, Elofsson A, Fischer D, Rychlewski L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics. 2003;19(8):1015–8.

    Google Scholar 

  14. Wolpert DH. Stacked generalization. Neural Netw. 1992;5(2):241–59.

    Article  MathSciNet  Google Scholar 

  15. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. Berlin: Springer; 1995. p. 23–37.

    Google Scholar 

  16. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  MATH  Google Scholar 

  17. Xia Z, Wu LY, Zhou X, Wong ST. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol. 2010;4 Suppl 2:S6.

    Google Scholar 

  18. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.

    MATH  Google Scholar 

  19. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):27.

    Article  Google Scholar 

  20. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34 Suppl 1:D354–7.

    Google Scholar 

  21. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, et al. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 2004;32 Suppl 1:D431–3.

    Google Scholar 

  22. Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, et al. SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res. 2008;36 Suppl 1:D919–22.

    Google Scholar 

  23. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011;39 Suppl 1:D1035–41.

    Google Scholar 

  24. Hattori M, Tanaka N, Kanehisa M, Goto S. SIMCOMP/SUBCOMP: chemical structure search servers for network analyses. Nucleic Acids Res. 2010;38:W652–6. doi:10.1093/nar/gkq367. Web Server issue.

  25. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, R. (2015). An Ensemble Learning Approach for Improving Drug–Target Interactions Prediction. In: Wong, W. (eds) Proceedings of the 4th International Conference on Computer Engineering and Networks. Lecture Notes in Electrical Engineering, vol 355. Springer, Cham. https://doi.org/10.1007/978-3-319-11104-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11104-9_51

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11103-2

  • Online ISBN: 978-3-319-11104-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics