Soil Aggregate Stability in Eco-engineering: Comparison of Field and Laboratory Data with an Outlook on a New Modelling Approach

  • Frank GrafEmail author
  • Lothar te Kamp
  • Michael Auer
  • Madhu Sudan Acharya
  • Wei Wu
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


Stabilisation effects of plants are developing as a function of time. Within this scope, soil aggregation processes play a decisive role in re-establishing a protective vegetation cover. From this perspective we compared bare and vegetated soil, on the one hand artificially prepared and, on the other hand, derived from a recently landslide affected slope and an adjacent gully with 25 year old eco-engineering measures, respectively.

In both cases, the planted specimens had a significantly higher soil aggregate stability compared to their respective control samples, with the relative increase from control to planted equal for both the natural and artificial samples.

Aspects of the development and succession processes of plants are compared as well as rooting and the degree of mycorrhization. Additionally, soil development and the methodical approach are discussed as well as a new approach to modelling soil aggregate stability in respect of eco-engineering measures for slope stabilisation presented.


soil aggregate stability root length mycorrhiza field and laboratory samples modelling particle flow code (PFC) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morgan, R.P.C., Rickson, R.J.: Slope stabilization and erosion control: a bioengineering approach. Spon, London (1995)Google Scholar
  2. 2.
    Czerny, F.: Wildbachsperren. Konstruktionsformen, Belastung, Berechnung. Beton- und Stahlbetonbau 95, 743–749 (2000)CrossRefGoogle Scholar
  3. 3.
    Berger, J.J.: A generic framework for evaluating complex restoration and conservation projects. Environmental Professional 13, 254–262 (1991)Google Scholar
  4. 4.
    Hobbs, R.J., Norton, D.A.: Towards a conceptual framework for restoration ecology. Restoration Ecology 4, 93–110 (1996)CrossRefGoogle Scholar
  5. 5.
    Pastorok, R.A., MacDonald, A., Sampson, J.R., Wilber, P., Yozzo, D.J., Titre, J.P.: An ecological decision framework for environmental restoration projects. Ecological Engineering 9, 89–107 (1997)CrossRefGoogle Scholar
  6. 6.
    Baer, S.G., Kitchen, D.J., Blair, J.M., Rice, C.W.: Changes in ecosystem structure and function along a chronosequence of restored grasslands. Ecological Applications 12, 1688–1701 (2002)CrossRefGoogle Scholar
  7. 7.
    Anand, M., Desrochers, R.E.: Quantification of restoration success using complex systems concepts and models. Restoration Ecology 12, 117–123 (2004)CrossRefGoogle Scholar
  8. 8.
    Gretarsdottir, J., Aradottir, A.L., Vandvik, V., Heegaard, E., Birks, H.J.B.: Long-term effects of reclamation treatments on plant succession in Iceland. Restoration Ecology 12, 268–278 (2004)CrossRefGoogle Scholar
  9. 9.
    SER: The SER International Primer on Ecological Restoration. In: Group, S.f.E.R.I.S.P.W. (ed.) Society for Ecological Restoration International (2004),
  10. 10.
    Ruiz-Jaen, M.C., Aide, T.M.: Restoration success: How is it being measured? Restoration Ecology 13, 569–577 (2005)CrossRefGoogle Scholar
  11. 11.
    Arshad, M., Coen, G.: Characterization of soil quality: Physical and chemical criteria. American Journal of Alternative Agriculture 7, 25–32 (1992)CrossRefGoogle Scholar
  12. 12.
    Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amezaga, I., Garbisu, C.: Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health 18, 65–73 (2003)Google Scholar
  13. 13.
    Tian, G.L., Vose, J.M., Coleman, D.C., Geron, C.D., Walker, J.T.: Evaluation of the effectiveness of riparian zone restoration in the southern Appalachians by assessing soil microbial populations. Applied Soil Ecology 26, 63–68 (2004)CrossRefGoogle Scholar
  14. 14.
    Izquierdo, I., Caravaca, F., Alguacil, M.M., Hernandez, G., Roldan, A.: Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Applied Soil Ecology 30, 3–10 (2005)CrossRefGoogle Scholar
  15. 15.
    Hernandez-Allica, J., Becerril, J.M., Zarate, O., Garbisu, C.: Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil 281, 147–158 (2006)CrossRefGoogle Scholar
  16. 16.
    Wang, X.P., Li, X.R., Xiao, H.L., Pan, Y.X.: Evolutionary characteristics of the artificially revegetated shrub ecosystem in the Tengger Desert, northern China. Ecological Research 21, 415–424 (2006)CrossRefGoogle Scholar
  17. 17.
    Angers, D., Carter, M.: Aggregation and organic matter storage in cool, humid agricultural soils. In: Stewart, M., Stewart, B. (eds.) Structure and Organic Matter Storage in Agricultural Soils, pp. 193–211. Lewis Publishers CRC Press Inc., Boca Raton (1996)Google Scholar
  18. 18.
    Diaz-Zorita, M., Perfect, E., Grove, J.H.: Disruptive methods for assessing soil structure. Soil & Tillage Research 64, 3–22 (2002)CrossRefGoogle Scholar
  19. 19.
    Horn, R., Taubner, H., Wuttke, M., Baumgartl, T.: Soil physical properties related to soil structure. Soil and Tillage Research 2, 187–216 (1994)CrossRefGoogle Scholar
  20. 20.
    Amezketa, E.: Soil aggregate stability: A review. Journal of Sustainable Agriculture 14, 83–151 (1999)CrossRefGoogle Scholar
  21. 21.
    Eldridge, D.J., Leys, J.F.: Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. Journal of Arid Environments 53, 457–466 (2003)CrossRefGoogle Scholar
  22. 22.
    Wick, A.F., Ingram, L.J., Stahl, P.D.: Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biology & Biochemistry 41, 201–209 (2009)CrossRefGoogle Scholar
  23. 23.
    Barthes, B., Roose, E.: Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47, 133–149 (2002)CrossRefGoogle Scholar
  24. 24.
    Canton, Y., Sole-Benet, A., Asensio, C., Chamizo, S., Puigdefabregas, J.: Aggregate stability in range sandy loam soils. Relationships with runoff and erosion. Catena 77, 192–199 (2009)CrossRefGoogle Scholar
  25. 25.
    Terzaghi, K., Peck, R.B.: Soil mechanics in engineering practice. John Wiley & Sons, New York (1967)Google Scholar
  26. 26.
    Lang, H.J., Huder, J.: Bodenmechanik und Grundbau (5. Aufl.), p. 278. Springer, Berlin (1994)CrossRefGoogle Scholar
  27. 27.
    Frei, M., Böll, A., Graf, F., Heinimann, H.R., Springman, S.: Quantification of the influence of vegetation on soil stability. In: Lee, C.F., Tham, L.G. (eds.) Proceedings of the International Conference on Slope Engineering, Hong Kong, China, December 8-10, pp. 872–877. Department of Civil Engineering, University of Hong Kong (2003)Google Scholar
  28. 28.
    Graf, F., Frei, M., Böll, A.: Effects of vegetation on the angle of internal friction of a moraine. FOSNOLA 82, 61–78 (2009)Google Scholar
  29. 29.
    Pollen, N., Simon, A.: Estimating the mechanical effects of riparian vegetation on stream bank stability using a fibre bundle model. Water Resources Research 41, W07025 (2005), doi:10.1029/2004WR003801Google Scholar
  30. 30.
    Pollen, N.: Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 69, 197–205 (2007)CrossRefGoogle Scholar
  31. 31.
    Schwarz, M., Cohen, D., Or, D.: Spatial characterization of root reinforcement at stand scale: Theory and case study. Geomorphology 171-172, 190–200 (2012)CrossRefGoogle Scholar
  32. 32.
    Graf, F., Frei, M.: Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l. Ecological Engineering 57, 314–323 (2013)CrossRefGoogle Scholar
  33. 33.
    Kemper, W.D., Rosenau, R.C.: Aggregate stability and size distribution. In: Klute, A. (ed.) Methods of Soil Analysis. Part I, 2nd edn. Physical and mineralogical methods, pp. 425–442. American Society of Agronomy Inc. Soil Sci. Soc. Am. Inc., Madison (1986)Google Scholar
  34. 34.
    LeBissonnais, Y.: Aggregate stability and assessment of soil crustability and erodibility. I. Theory and methodology. European Journal of Soil Science 47, 425–437 (1996)CrossRefGoogle Scholar
  35. 35.
    Le Bissonnais, Y., Arrouyas, D.: Stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents. European Journal of Soil Science 48, 39–48 (1997)CrossRefGoogle Scholar
  36. 36.
    Le Bissonnais, Y., Blavet, D., De Noni, G., Laurent, J.Y., Asseline, J., Chenu, C.: Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables. European Journal of Soil Science 58, 188–195 (2007)CrossRefGoogle Scholar
  37. 37.
    Tisdall, J.M., Oades, J.M.: Organic-Matter and Water-Stable Aggregates in Soils. Journal of Soil Science 33, 141–163 (1982)CrossRefGoogle Scholar
  38. 38.
    Burri, K., Graf, F., Böll, A.: Revegetation measures improve soil aggregate stability: a case study on a landslide area in Central Switzerland. FOSNOLA 82, 45–60 (2009)Google Scholar
  39. 39.
    Burri, K.: Boden-Aggregatstabilität als Parameter zur Quantifizierung von Vegetationseffekten auf oberflächennahe Bodenbewegungen. Master’s Thesis, ETH, Eidgenössische Technische Hochschule Zürich, Institut für terrestrische Ökosysteme (ITES) (2006),
  40. 40.
    ASTM D 2487-00: Practice for classification of soils for engineering purposes (unified classification system). Ann. b. ASTM standards, sect. four: constr., vol. 04(08), pp. 248–259 (2002) Google Scholar
  41. 41.
    ASTM D 422-63: Standard test method for particle size analysis of soils. Ann. b. ASTM standards, sect. four: constr., vol. 04(08), pp. 10–17 (2000) Google Scholar
  42. 42.
    ASTM D 4318-00: Standard test method for liquid limit, plastic limit, and plasticity index of soils. Ann. b. ASTM standards, sect. four: constr., vol. 04(08), pp. 580–593 (2000) Google Scholar
  43. 43.
    ASTM D 698-00a: Standard test method for laboratory compaction characteristics of soil using standard effort (12400 ft-lbf/ft3 (600 kNm/m3)). Ann. b. ASTM standards, sect. four: constr., vol. 04(08), pp. 81–91 (2000) Google Scholar
  44. 44.
    WinRhizo®:Régent Instruments Inc., 4040 rue Blain, Quebec, Qc G2B 5C3, Canada (2000),
  45. 45.
    Brundrett, M., Bougher, N., Dell, B., Grove, T., Malajczuk, N.: Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32, p. 380. Australian Centre for International Agricultural Research, Canberra (1996)Google Scholar
  46. 46.
    Sieverding, E.: Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems. Deutsche Gesellschaft für Techn. Zusammenarbeit (GTZ) GmbH, Eschborn (1991)Google Scholar
  47. 47.
    R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2014),, ISBN 3-900051-07-0
  48. 48.
    Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70 (1979)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Becker, R.A., Chambers, J.M., Wilks, A.R.: The New S Language. Wadsworth & Brooks/Cole (1988)Google Scholar
  50. 50.
    Stahel, W.A.: Statistische Datenanalyse, 3. Auflage, p. 379. Vieweg Verlag, Braunschweig (2000)CrossRefGoogle Scholar
  51. 51.
    Degens, B.P., Sparling, G.P., Abbott, L.K.: The Contribution from Hyphae, Roots and Organic-Carbon Constituents to the Aggregation of a Sandy Loam under Long-Term Clover-Based and Grass Pastures. European Journal of Soil Science 45, 459–468 (1994)CrossRefGoogle Scholar
  52. 52.
    Gros, R., Monrozier, L.J., Bartoli, F., Chotte, J.L., Faivre, P.: Relationships between soil physico-chemical properties and microbial activity along a restoration chronosequence of alpine grasslands following ski run construction. Applied Soil Ecology 27, 7–22 (2004)CrossRefGoogle Scholar
  53. 53.
    Arnold, A., Thielen, A., Springman, S.M.: On the stability of active layers in alpine permafrost. In: 11th International Conference and Field Trip on Landslides (ICFL), Trondheim, Norway, September 1-10, pp. 19–25. Taylor & Francis, Netherlands (2005)Google Scholar
  54. 54.
    DIN 18137-2:Baugrund, Untersuchung von Bodenproben - Bestimmung der Scherfestigkeit – Teil 2: Triaxialversuch, p. 48. Beuth Verlag GmbH, Berlin (2011)Google Scholar
  55. 55.
    Smith, S.E., Read, D.J.: Mycorrhizal Symbiosis, p. 787. Academic Press, London (2008)Google Scholar
  56. 56.
    Biondini, M.E., Bonham, C.D., Redente, E.F.: Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetatio 60, 25–36 (1985)CrossRefGoogle Scholar
  57. 57.
    Rillig, M.C., Mummey, D.L.: Mycorrhizas and soil structure. New Phytologist 171, 41–53 (2006)CrossRefGoogle Scholar
  58. 58.
    Pohl, M., Graf, F., Butler, A., Rixen, C.: The relationship between plant species richness and soil aggregate stability can depend on disturbance. Plant and Soil 355, 87–102 (2012)CrossRefGoogle Scholar
  59. 59.
    Wu, T.H.: Effect of Vegetation on Slope Stability. Transportation Research Report 965, 37–46 (1984)Google Scholar
  60. 60.
    Bischetti, G.B., Chiaradia, E.A., Simonata, T., Speziali, B., Vitali, B., Vullo, P., Zocco, A.: Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and Soil 278, 11–22 (2005)CrossRefGoogle Scholar
  61. 61.
    Vergani, C., Chiaradia, E.R., Bischetti, G.B.: Variability in the tensile resistance of roots in Alpine forest tree species. Ecological Engineering 46, 43–56 (2012)CrossRefGoogle Scholar
  62. 62.
    Itasca (2014) PFC3D Particle Flow Code in 3 Dimensions, (March 27, 2014)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Frank Graf
    • 1
    Email author
  • Lothar te Kamp
    • 2
  • Michael Auer
    • 3
  • Madhu Sudan Acharya
    • 4
  • Wei Wu
    • 4
  1. 1.WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
  2. 2.ITASCA Consultants GmbHGelsenkirchenGermany
  3. 3.J. Krismer Handels GmbHRumAustria
  4. 4.Institut für GeotechnikUniversität für BodenkulturViennaAustria

Personalised recommendations