Skip to main content

Soil Aggregate Stability in Eco-engineering: Comparison of Field and Laboratory Data with an Outlook on a New Modelling Approach

  • Chapter
Recent Advances in Modeling Landslides and Debris Flows

Abstract

Stabilisation effects of plants are developing as a function of time. Within this scope, soil aggregation processes play a decisive role in re-establishing a protective vegetation cover. From this perspective we compared bare and vegetated soil, on the one hand artificially prepared and, on the other hand, derived from a recently landslide affected slope and an adjacent gully with 25 year old eco-engineering measures, respectively.

In both cases, the planted specimens had a significantly higher soil aggregate stability compared to their respective control samples, with the relative increase from control to planted equal for both the natural and artificial samples.

Aspects of the development and succession processes of plants are compared as well as rooting and the degree of mycorrhization. Additionally, soil development and the methodical approach are discussed as well as a new approach to modelling soil aggregate stability in respect of eco-engineering measures for slope stabilisation presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan, R.P.C., Rickson, R.J.: Slope stabilization and erosion control: a bioengineering approach. Spon, London (1995)

    Google Scholar 

  2. Czerny, F.: Wildbachsperren. Konstruktionsformen, Belastung, Berechnung. Beton- und Stahlbetonbau 95, 743–749 (2000)

    Article  Google Scholar 

  3. Berger, J.J.: A generic framework for evaluating complex restoration and conservation projects. Environmental Professional 13, 254–262 (1991)

    Google Scholar 

  4. Hobbs, R.J., Norton, D.A.: Towards a conceptual framework for restoration ecology. Restoration Ecology 4, 93–110 (1996)

    Article  Google Scholar 

  5. Pastorok, R.A., MacDonald, A., Sampson, J.R., Wilber, P., Yozzo, D.J., Titre, J.P.: An ecological decision framework for environmental restoration projects. Ecological Engineering 9, 89–107 (1997)

    Article  Google Scholar 

  6. Baer, S.G., Kitchen, D.J., Blair, J.M., Rice, C.W.: Changes in ecosystem structure and function along a chronosequence of restored grasslands. Ecological Applications 12, 1688–1701 (2002)

    Article  Google Scholar 

  7. Anand, M., Desrochers, R.E.: Quantification of restoration success using complex systems concepts and models. Restoration Ecology 12, 117–123 (2004)

    Article  Google Scholar 

  8. Gretarsdottir, J., Aradottir, A.L., Vandvik, V., Heegaard, E., Birks, H.J.B.: Long-term effects of reclamation treatments on plant succession in Iceland. Restoration Ecology 12, 268–278 (2004)

    Article  Google Scholar 

  9. SER: The SER International Primer on Ecological Restoration. In: Group, S.f.E.R.I.S.P.W. (ed.) Society for Ecological Restoration International (2004), www.ser.org/resources/resources-detail-view/ser-international-primer-on-ecological-restoration

  10. Ruiz-Jaen, M.C., Aide, T.M.: Restoration success: How is it being measured? Restoration Ecology 13, 569–577 (2005)

    Article  Google Scholar 

  11. Arshad, M., Coen, G.: Characterization of soil quality: Physical and chemical criteria. American Journal of Alternative Agriculture 7, 25–32 (1992)

    Article  Google Scholar 

  12. Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amezaga, I., Garbisu, C.: Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health 18, 65–73 (2003)

    Google Scholar 

  13. Tian, G.L., Vose, J.M., Coleman, D.C., Geron, C.D., Walker, J.T.: Evaluation of the effectiveness of riparian zone restoration in the southern Appalachians by assessing soil microbial populations. Applied Soil Ecology 26, 63–68 (2004)

    Article  Google Scholar 

  14. Izquierdo, I., Caravaca, F., Alguacil, M.M., Hernandez, G., Roldan, A.: Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Applied Soil Ecology 30, 3–10 (2005)

    Article  Google Scholar 

  15. Hernandez-Allica, J., Becerril, J.M., Zarate, O., Garbisu, C.: Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil 281, 147–158 (2006)

    Article  Google Scholar 

  16. Wang, X.P., Li, X.R., Xiao, H.L., Pan, Y.X.: Evolutionary characteristics of the artificially revegetated shrub ecosystem in the Tengger Desert, northern China. Ecological Research 21, 415–424 (2006)

    Article  Google Scholar 

  17. Angers, D., Carter, M.: Aggregation and organic matter storage in cool, humid agricultural soils. In: Stewart, M., Stewart, B. (eds.) Structure and Organic Matter Storage in Agricultural Soils, pp. 193–211. Lewis Publishers CRC Press Inc., Boca Raton (1996)

    Google Scholar 

  18. Diaz-Zorita, M., Perfect, E., Grove, J.H.: Disruptive methods for assessing soil structure. Soil & Tillage Research 64, 3–22 (2002)

    Article  Google Scholar 

  19. Horn, R., Taubner, H., Wuttke, M., Baumgartl, T.: Soil physical properties related to soil structure. Soil and Tillage Research 2, 187–216 (1994)

    Article  Google Scholar 

  20. Amezketa, E.: Soil aggregate stability: A review. Journal of Sustainable Agriculture 14, 83–151 (1999)

    Article  Google Scholar 

  21. Eldridge, D.J., Leys, J.F.: Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. Journal of Arid Environments 53, 457–466 (2003)

    Article  Google Scholar 

  22. Wick, A.F., Ingram, L.J., Stahl, P.D.: Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biology & Biochemistry 41, 201–209 (2009)

    Article  Google Scholar 

  23. Barthes, B., Roose, E.: Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47, 133–149 (2002)

    Article  Google Scholar 

  24. Canton, Y., Sole-Benet, A., Asensio, C., Chamizo, S., Puigdefabregas, J.: Aggregate stability in range sandy loam soils. Relationships with runoff and erosion. Catena 77, 192–199 (2009)

    Article  Google Scholar 

  25. Terzaghi, K., Peck, R.B.: Soil mechanics in engineering practice. John Wiley & Sons, New York (1967)

    Google Scholar 

  26. Lang, H.J., Huder, J.: Bodenmechanik und Grundbau (5. Aufl.), p. 278. Springer, Berlin (1994)

    Book  Google Scholar 

  27. Frei, M., Böll, A., Graf, F., Heinimann, H.R., Springman, S.: Quantification of the influence of vegetation on soil stability. In: Lee, C.F., Tham, L.G. (eds.) Proceedings of the International Conference on Slope Engineering, Hong Kong, China, December 8-10, pp. 872–877. Department of Civil Engineering, University of Hong Kong (2003)

    Google Scholar 

  28. Graf, F., Frei, M., Böll, A.: Effects of vegetation on the angle of internal friction of a moraine. FOSNOLA 82, 61–78 (2009)

    Google Scholar 

  29. Pollen, N., Simon, A.: Estimating the mechanical effects of riparian vegetation on stream bank stability using a fibre bundle model. Water Resources Research 41, W07025 (2005), doi:10.1029/2004WR003801

    Google Scholar 

  30. Pollen, N.: Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 69, 197–205 (2007)

    Article  Google Scholar 

  31. Schwarz, M., Cohen, D., Or, D.: Spatial characterization of root reinforcement at stand scale: Theory and case study. Geomorphology 171-172, 190–200 (2012)

    Article  Google Scholar 

  32. Graf, F., Frei, M.: Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l. Ecological Engineering 57, 314–323 (2013)

    Article  Google Scholar 

  33. Kemper, W.D., Rosenau, R.C.: Aggregate stability and size distribution. In: Klute, A. (ed.) Methods of Soil Analysis. Part I, 2nd edn. Physical and mineralogical methods, pp. 425–442. American Society of Agronomy Inc. Soil Sci. Soc. Am. Inc., Madison (1986)

    Google Scholar 

  34. LeBissonnais, Y.: Aggregate stability and assessment of soil crustability and erodibility. I. Theory and methodology. European Journal of Soil Science 47, 425–437 (1996)

    Article  Google Scholar 

  35. Le Bissonnais, Y., Arrouyas, D.: Stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents. European Journal of Soil Science 48, 39–48 (1997)

    Article  Google Scholar 

  36. Le Bissonnais, Y., Blavet, D., De Noni, G., Laurent, J.Y., Asseline, J., Chenu, C.: Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables. European Journal of Soil Science 58, 188–195 (2007)

    Article  Google Scholar 

  37. Tisdall, J.M., Oades, J.M.: Organic-Matter and Water-Stable Aggregates in Soils. Journal of Soil Science 33, 141–163 (1982)

    Article  Google Scholar 

  38. Burri, K., Graf, F., Böll, A.: Revegetation measures improve soil aggregate stability: a case study on a landslide area in Central Switzerland. FOSNOLA 82, 45–60 (2009)

    Google Scholar 

  39. Burri, K.: Boden-Aggregatstabilität als Parameter zur Quantifizierung von Vegetationseffekten auf oberflächennahe Bodenbewegungen. Master’s Thesis, ETH, Eidgenössische Technische Hochschule Zürich, Institut für terrestrische Ökosysteme (ITES) (2006), http://dx.doi.org/10.3929/ethz-a-005326734

  40. ASTM D 2487-00: Practice for classification of soils for engineering purposes (unified classification system). Ann. b. ASTM standards, sect. four: constr., vol. 04(08), pp. 248–259 (2002)

    Google Scholar 

  41. ASTM D 422-63: Standard test method for particle size analysis of soils. Ann. b. ASTM standards, sect. four: constr., vol. 04(08), pp. 10–17 (2000)

    Google Scholar 

  42. ASTM D 4318-00: Standard test method for liquid limit, plastic limit, and plasticity index of soils. Ann. b. ASTM standards, sect. four: constr., vol. 04(08), pp. 580–593 (2000)

    Google Scholar 

  43. ASTM D 698-00a: Standard test method for laboratory compaction characteristics of soil using standard effort (12400 ft-lbf/ft3 (600 kNm/m3)). Ann. b. ASTM standards, sect. four: constr., vol. 04(08), pp. 81–91 (2000)

    Google Scholar 

  44. WinRhizo®:Régent Instruments Inc., 4040 rue Blain, Quebec, Qc G2B 5C3, Canada (2000), http://www.regent.qc.ca

  45. Brundrett, M., Bougher, N., Dell, B., Grove, T., Malajczuk, N.: Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32, p. 380. Australian Centre for International Agricultural Research, Canberra (1996)

    Google Scholar 

  46. Sieverding, E.: Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems. Deutsche Gesellschaft für Techn. Zusammenarbeit (GTZ) GmbH, Eschborn (1991)

    Google Scholar 

  47. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2014), http://www.R-project.org , ISBN 3-900051-07-0

  48. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  49. Becker, R.A., Chambers, J.M., Wilks, A.R.: The New S Language. Wadsworth & Brooks/Cole (1988)

    Google Scholar 

  50. Stahel, W.A.: Statistische Datenanalyse, 3. Auflage, p. 379. Vieweg Verlag, Braunschweig (2000)

    Book  Google Scholar 

  51. Degens, B.P., Sparling, G.P., Abbott, L.K.: The Contribution from Hyphae, Roots and Organic-Carbon Constituents to the Aggregation of a Sandy Loam under Long-Term Clover-Based and Grass Pastures. European Journal of Soil Science 45, 459–468 (1994)

    Article  Google Scholar 

  52. Gros, R., Monrozier, L.J., Bartoli, F., Chotte, J.L., Faivre, P.: Relationships between soil physico-chemical properties and microbial activity along a restoration chronosequence of alpine grasslands following ski run construction. Applied Soil Ecology 27, 7–22 (2004)

    Article  Google Scholar 

  53. Arnold, A., Thielen, A., Springman, S.M.: On the stability of active layers in alpine permafrost. In: 11th International Conference and Field Trip on Landslides (ICFL), Trondheim, Norway, September 1-10, pp. 19–25. Taylor & Francis, Netherlands (2005)

    Google Scholar 

  54. DIN 18137-2:Baugrund, Untersuchung von Bodenproben - Bestimmung der Scherfestigkeit – Teil 2: Triaxialversuch, p. 48. Beuth Verlag GmbH, Berlin (2011)

    Google Scholar 

  55. Smith, S.E., Read, D.J.: Mycorrhizal Symbiosis, p. 787. Academic Press, London (2008)

    Google Scholar 

  56. Biondini, M.E., Bonham, C.D., Redente, E.F.: Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetatio 60, 25–36 (1985)

    Article  Google Scholar 

  57. Rillig, M.C., Mummey, D.L.: Mycorrhizas and soil structure. New Phytologist 171, 41–53 (2006)

    Article  Google Scholar 

  58. Pohl, M., Graf, F., Butler, A., Rixen, C.: The relationship between plant species richness and soil aggregate stability can depend on disturbance. Plant and Soil 355, 87–102 (2012)

    Article  Google Scholar 

  59. Wu, T.H.: Effect of Vegetation on Slope Stability. Transportation Research Report 965, 37–46 (1984)

    Google Scholar 

  60. Bischetti, G.B., Chiaradia, E.A., Simonata, T., Speziali, B., Vitali, B., Vullo, P., Zocco, A.: Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and Soil 278, 11–22 (2005)

    Article  Google Scholar 

  61. Vergani, C., Chiaradia, E.R., Bischetti, G.B.: Variability in the tensile resistance of roots in Alpine forest tree species. Ecological Engineering 46, 43–56 (2012)

    Article  Google Scholar 

  62. Itasca (2014) PFC3D Particle Flow Code in 3 Dimensions, http://www.itascacg.com/software/pfc3d (March 27, 2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Graf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Graf, F., te Kamp, L., Auer, M., Acharya, M.S., Wu, W. (2015). Soil Aggregate Stability in Eco-engineering: Comparison of Field and Laboratory Data with an Outlook on a New Modelling Approach. In: Wu, W. (eds) Recent Advances in Modeling Landslides and Debris Flows. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-11053-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11053-0_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11052-3

  • Online ISBN: 978-3-319-11053-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics