Effect of Vegetation on Stability of Soil Slopes: Numerical Aspect

  • Wei Wu
  • Barbara Maria Switala
  • Madhu Sudan Acharya
  • Roberto Tamagnini
  • Michael Auer
  • Frank Graf
  • Lothar te Kamp
  • Wei Xiang
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


Soil bioengineering makes use of living plants to enhance soil stability against erosion and failure. Its practice is strongly dominated by empiricism. Recently much effort has been made towards quantifying soil bioengineering measures. This paper provides a critical review of the numerical modelling of some soil bioengineering measures. We discuss the application of the numerical methods including the finite element method and the limit equilibrium method for the composite of soil-plant root. A detailed review of the mechanical and hydrological models for the complex interaction between soil, plant, water and atmosphere is provided.


soil bioengineering slope stability numerical methods root reinforcement root water uptake limit equilibrium methods finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borja, R.I., White, J.A., Liu, X.Y., Wu, W.: Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling. Int. J. Numer. Anal. Meth. Geomech. 36, 236–248 (2012)CrossRefGoogle Scholar
  2. 2.
    Sung, K.J., Yavuz, C.M., Drew, M.C.: Heat and mass transfer in the vadose zone with plant roots. Journal of Contaminant Hydrology 57, 99–127 (2002)CrossRefGoogle Scholar
  3. 3.
    Bergkamp, G.: A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands. Catena 33, 201–220 (1998)CrossRefGoogle Scholar
  4. 4.
    Puigdefábregas, J.: The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surface Processes and Landforms 30, 133–147 (2005)CrossRefGoogle Scholar
  5. 5.
    Yu, H.S., Salgado, R., Sloan, S.W., Kim, J.M.: Limit analysis versus limit equilibrium for slope stability. J Geotech. Geoenviron. Eng. 124, 1–11 (1998)CrossRefGoogle Scholar
  6. 6.
    Baum, R.L., Savage, W.Z., Godt, J.W.: TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0. U.S. Geological Survey Open-File Report, 2008-1159, 75 p. (2008)Google Scholar
  7. 7.
    Fan, C.C., Lai, Y.F.: Influence of the spatial layout of vegetation on the stability of slopes. Plant Soil, 1–13 (2014), doi:10.1007/s11104-012-1569-9Google Scholar
  8. 8.
    Docker, B.B., Hubble, T.C.T.: Modelling the distribution of enhanced soil shear strength beneath riparian trees of south-eastern Australia. Ecological Engineering 35, 921–934 (2009)CrossRefGoogle Scholar
  9. 9.
    Rai, R., Shrivastva, B.K.: Effect of grass on soil reinforcement and shear strength. Ground Improvement 165, 127–130 (2012)CrossRefGoogle Scholar
  10. 10.
    Mao, Z., Bourrier, F., Stokes, A., Fourcaud, T.: Three-dimensional modelling of slope stability in heterogeneous montane forest ecosystems. Ecological Modelling 273, 11–22 (2014)CrossRefGoogle Scholar
  11. 11.
    Balaguru, N., Shah, S.P.: Fiber reinforced cement composites. McGraw-Hill, New York (1982)Google Scholar
  12. 12.
    Matthews, C., Farook, Z.: Slope stability analysis – limit equilibrium or the finite element method? Ground Engineering, 22–28 (May 2014)Google Scholar
  13. 13.
    Eubanks, C.E., Meadows, D., Cremer, J.S.: A Soil Bioengineering Guide for Streambank and Lakeshore Stabilization FS-683. ch. 5, Soil Bioengineering Techniques, U.S. Department of Agriculture Forest Service (2002)Google Scholar
  14. 14.
    The Federal Interagency Stream Restoration Working Group: Stream Corridor Restoration Handbook. USDA (1998)Google Scholar
  15. 15.
    National Engineering Handbook, Technical Supplement 14M, Vegetated Rock Walls, USDA (2007)Google Scholar
  16. 16.
    Waldron, L.J.: Shear resistance of root-permeated homogeneous and stratified soil. Soil Science Society of America Journal 41, 843–849 (1977)CrossRefGoogle Scholar
  17. 17.
    Wu, T.H.: Investigation of landslides on Prince of Wales Island, Alaska. Geotechnical Engineering Report 5, Ohio State University, Department of Civil Engineering (1976)Google Scholar
  18. 18.
    Wu, T.H., McKinnell, W.P., Swanston, D.N.: Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal 114(12), 19–33 (1979)CrossRefGoogle Scholar
  19. 19.
    Gray, D.H., Ohashi, H.: Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering 109(3), 335–353 (1983)CrossRefGoogle Scholar
  20. 20.
    Brenner, R.P.: A hydrological model study of a forested and cutover slope. Hydrological Sciences 18, 125–144 (1973)CrossRefGoogle Scholar
  21. 21.
    Pollen, N., Simon, A.: Estimating mechanical effects of riparian vegetation on streambank stability using a fiber bundle model. Water Resources Research 41(W07025) (2005), doi:10.1029/2004WR003801Google Scholar
  22. 22.
    Pollen, N.: Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 69, 197–205 (2007), doi:10.1016/j.catena.2006.05.004CrossRefGoogle Scholar
  23. 23.
    Pollen, N., Simon, A., Jaeger, K., Wohl, E.: Destabilization of streambank by removal of invasive species in Canyon de Chelly national monument, Arizona. Geomorphology 103, 363–374 (2009)CrossRefGoogle Scholar
  24. 24.
    Schwarz, M., Lehmann, P., Or, D.: Quantifying lateral root reinforcement in steep slopes-from a bundle of roots to tree stands. Earth Surface Processes and Landforms 35, 354–367 (2010)CrossRefGoogle Scholar
  25. 25.
    Schwarz, M., Cohen, D., Or, D.: Spatial characterization of root reinforcement at stand scale: Theory and case study. Geomorphology 171-172, 190–200 (2012)CrossRefGoogle Scholar
  26. 26.
    Schwarz, M., Giadrossich, F., Cohen, D.: Modeling root reinforcement using a root-failure Weibull survival function. Hydrology and Earth System Sciences 17, 4367–4377 (2013),, doi:10.5194/hess-17-4367-2013CrossRefGoogle Scholar
  27. 27.
    Dupuy, L., Gregory, P.J., Bengough, A.G.: Root growth models: towards a new generation of continuous approaches. Journal of Experimental Botany 61, 2131–2143 (2010), doi:10.1093/jxb/erp389Google Scholar
  28. 28.
    Dupuy, L., Vignes, M., Mckenzie, B.M., White, P.J.: The dynamics of root meristem distribution in the soil. Plant, Cell and Environment 33, 358–369 (2010), doi:10.1111/j.1365-3040.2009.02081CrossRefGoogle Scholar
  29. 29.
    Bourrier, F., Kneib, F., Chareyre, B., Fourcaud, T.: Discrete modeling of granular soils reinforcement by plant roots. Ecological Engineering (2013),
  30. 30.
    Smilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtes, L., Sibille, L., Stransky, J., Thoeni, K.: Yade Documentation, 1st edn. (2010), The Yade Project:
  31. 31.
    Monteith, J.L.: Evaporation and environment. Symposia of the Society for Experimental Biology 19, 205–234 (1965)Google Scholar
  32. 32.
    Penman, H.L.: Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London A 193, 120–145 (1948)CrossRefGoogle Scholar
  33. 33.
    Allen, R.G., Pereira, L.S., Raes, D., Smith, M.: Crop Evapotranspiration- Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Number 6541. FAO, Rome 300 (1998)Google Scholar
  34. 34.
    Van den Honert, T.H.: Water transport as a catenary process. Faraday Society Discussion 3, 146–153 (1948)CrossRefGoogle Scholar
  35. 35.
    Gardner, W.R.: Dynamic aspects of water availability to plants. Soil Science 89(2), 228–232 (1960)CrossRefGoogle Scholar
  36. 36.
    Feddes, R.A., Bresler, E., Neuman, S.P.: Field tests of a modified numerical model for water uptake by plant roots systems. Water Resources Research 10, 1199–1206 (1974)CrossRefGoogle Scholar
  37. 37.
    Wilkinson, P.L., Anderson, M.G., Lloyd, D.M.: An integrated hydrological model for rain-induced landslide prediction. Earth Surface Processes and Landforms 27, 1285–1297 (2002)CrossRefGoogle Scholar
  38. 38.
    Wilkinson, P.L., Anderson, M.G., Lloyd, D.M., Renaud, J.-P.: Landslide hazard and bioengineering: towards providing improved decision support through integrated numerical model development. Environmental Modelling & Software 17, 333–344 (2002)CrossRefGoogle Scholar
  39. 39.
    Janbu, N.: Application of composite slip surface for stability analysis. In: Proceedings of the European Conference on the Stability of Earth Slopes, Stockholm, vol. 3, pp. 43–49 (1954)Google Scholar
  40. 40.
    Greenwood, J.R.: SLIP4EX - a program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes. Geotechnical and Geological Engineering 24, 449–465 (2006)CrossRefGoogle Scholar
  41. 41.
    Fatahi, B.: Modelling of inuence of matric suction induced by native vegetation on sub-soil improvement. PhD thesis, University of Wollongong, Australia (2007)Google Scholar
  42. 42.
    Fatahi, B., Khabbaz, H., Indraratna, B.: Parametric studies on bioengineering effects of tree-root based suction on ground behaviour. Ecological Engineering 35, 1415–1426 (2009)CrossRefGoogle Scholar
  43. 43.
    Fatahi, B., Khabbaz, H., Indraratna, B.: Bioengineering ground improvement considering root water uptake model. Ecological Engineering 36, 222–229 (2010)CrossRefGoogle Scholar
  44. 44.
    Wan, Y., Xue, Q., Zhao, Y.: Mechanism study and numerical simulation on vegetation affecting the slope stability. Electronic Journal of Geotechnical Engineers 16, 741–751 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wei Wu
    • 1
  • Barbara Maria Switala
    • 1
  • Madhu Sudan Acharya
    • 1
  • Roberto Tamagnini
    • 1
  • Michael Auer
    • 2
  • Frank Graf
    • 3
  • Lothar te Kamp
    • 4
  • Wei Xiang
    • 5
  1. 1.Institut für GeotechnikUniversität für BodenkulturViennaAustria
  2. 2.J. Krismer Handels GmbHRumAustria
  3. 3.WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
  4. 4.ITASCA Consultants GmbHGelsenkirchenGermany
  5. 5.China University of GeosciencesWuhanChina

Personalised recommendations