Modelling of a Free Surface Flow at Variable Gravity Conditions with SPH

  • Chong PengEmail author
  • Miguel Angel Cabrera
  • Wei Wu
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


Smoothed Particle Hydrodynamics (SPH) are adapted to model a free surface flow at variable gravity conditions. Implementation of SPH related to high gravity fields are discussed. The analysis shows that the original formulation of SPH needs no modification for the variation of gravity, though a smaller time step must be used. Numerical simulations of a water flow problem show that SPH is consistent at different gravity fields, and produce reasonable results. The scaling principle of the velocity and time of a flowing mass down an incline is discussed.


Geotechnical centrifuge smoothed particle hydrodynamics water flow variable gravity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowman, E., Laue, J., Springman, S.: Experimental modelling of debris flow behaviour using a geotechnical centrifuge. Canadian Geotechnical Journal 47(7), 742–762 (2010)CrossRefGoogle Scholar
  2. 2.
    Crespo, A.J.C., Dominguez, J., Barreiro, A., Gomez-Gesteira, M., Rogers, B.D.: DualSPHysics, new GPU computing on SPH models. In: Proc. 6th International SPHERIC Workshop, pp. 348–354 (2011)Google Scholar
  3. 3.
    Dalrymple, R.A., Rogers, B.D.: Numerical modeling of water waves with the SPH method. Coastal Engineering 53(2), 141–147 (2006)CrossRefGoogle Scholar
  4. 4.
    Gomez-Gesteira, M., Rogers, B., Dalrymple, R., Crespo, A.: State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research 48(1), 6–27 (2010)CrossRefGoogle Scholar
  5. 5.
    Ling, H., Wu, M., Leshchinsky, D., Leshchinsky, B.: Centrifuge modeling of slope instability. J. Geotech. Geoenviron. Eng. 135(6), 758–767 (2009)CrossRefGoogle Scholar
  6. 6.
    Mitchell, R.J.: The eleventh annual R.M. Hardy Keynote Address, 1997: Centrifugation in geoenvironmental practice and education. Canadian Geotechnical Journal 35(4), 630–640 (1998)CrossRefGoogle Scholar
  7. 7.
    Monaghan, J.J.: Why particle methods work. SIAM Journal on Scientific and Statistical Computing 3(4), 422–433 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Monaghan, J.J.: Simulating free surface flows with SPH. Journal of Computational Physics 110(2), 399–406 (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Morris, J.P., Monaghan, J.J.: A switch to reduce SPH viscosity. Journal of Computational Physics 136(1), 41–50 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Shao, S.: Simulation of breaking wave by SPH method coupled with k-ε model. Journal of Hydraulic Research 44(3), 338–349 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für GeotechnikUniversität für BodenkulturViennaAustria

Personalised recommendations