Skip to main content

DAEs in Model Reduction of Chemical Processes: An Overview

  • Chapter
  • First Online:
Surveys in Differential-Algebraic Equations II

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

Abstract

Differential algebraic equation (DAE) systems of semi-explicit type arise naturally in the modeling of chemical engineering processes. The differential equations typically arise from dynamic conservation equations, while the algebraic constraints from constitutive equations, rate expressions, equilibrium relations, stoichiometric constraints, etc. Of particular interest are DAE systems of high index , i.e., those for which the algebraic constraints are singular and cannot be eliminated through appropriate substitutions. In this paper we provide an overview of generic classes of fast-rate chemical process models, which in the limit of infinitely fast rates, generate equilibrium-based models that are high-index DAE systems. These slow approximations of multi-time-scale systems can be obtained rigorously via singular perturbations. Two classes of nonstandard singularly perturbed systems leading to high-index DAEs are identified and analyzed. The first class arises in processes with fast rates of reaction or transport. We focus in particular on chemical reaction systems which often exhibit dynamics in multiple time-scales due to reaction rate constants that vary over widely different orders of magnitude. For such systems, we describe the sequential application of singular perturbations arguments for deriving nonlinear DAE models of the dynamics in the different time-scales. The second class arises in the modeling of tightly integrated process networks , i.e., those with large rates of recovery and recycle of material or energy. For such systems we describe a similar model reduction method for deriving DAE models of the slow network dynamics and discuss control-relevant considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aris, R., Gavalas, G.R.: On the theory of reactions in continuous mixtures. Philos. Trans. R. Soc. 269(9A260), 351–393 (1966)

    Google Scholar 

  2. Bailey, J.E.: Lumping analysis of reactions in continuous mixtures. Chem. Eng. J. 3, 52–71 (1972)

    Article  Google Scholar 

  3. Baldea, M., Daoutidis, P.: Model reduction and control of reactor–heat exchanger networks. J. Process Control 16, 265–274 (2006)

    Article  Google Scholar 

  4. Baldea, M., Araujo, A., Skogestad, S., Daoutidis, P.: Dynamic considerations in the synthesis of self-optimizing control structures. AIChE J. 54, 1830 (2008)

    Article  Google Scholar 

  5. Baldea, M., Daoutidis. P.: Dynamics and control of integrated process networks - a multi-time perspective. Comput. Chem. Eng. 31, 426 (2007)

    Google Scholar 

  6. Baldea, M., Daoutidis, P.: Modeling, dynamics and control of process networks with high energy throughput. Comput. Chem. Eng. 32(9), 1964–1983 (2008)

    Article  Google Scholar 

  7. Baldea, M., Daoutidis, P.: Control of integrated chemical process systems using underlying DAE models. In: Control and Optimization with Differential-Algebraic Constraints, pp. 281–300. SIAM, Philadelphia (2012)

    Google Scholar 

  8. Baldea, M., Daoutidis, P.: Dynamics and nonlinear control of integrated process systems. In: Chemical Engineering Series. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  9. Baldea, M., Daoutidis, P., Kumar, A.: Dynamics and control of integrated networks with purge streams. AIChE J. 52, 1460–1472 (2006)

    Article  Google Scholar 

  10. Bauer, I., Bock, H.G., Korkel, S., Schloder, J.P.: Numerical methods for optimum experimental design in dae systems. J. Comput. Appl. Math. 120, 1–25 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Biegler, L., Campbell, S.L., Mehrmann, V. (eds.): Control and Optimization with Differential-Algebraic Constraints. SIAM, Philadelphia (2012)

    MATH  Google Scholar 

  12. Bowen, J.R., Acrivos, A., Oppenheim, A.K.: Singular perturbation refinement to quasi-steady-state approximation in chemical kinetics. Chem. Eng. Sci. 18, 177–188 (1963)

    Article  Google Scholar 

  13. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. In: Classics in Applied Mathematics. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  14. Byrne, G.D., Ponzi, P.R.: Differential-algebraic systems, their applications and solutions. Comput. Chem. Eng. 12, 377–382 (1988)

    Article  Google Scholar 

  15. Campbell, S.L.: Singular systems of differential equations II. In: Research Notes in Mathematics, vol. 61, Pitman Books, San Francisco, London, Melbourne (1982)

    Google Scholar 

  16. Cervantes, A.M., Wachter, A., Tutuncu, R.H., Biegler, L.T.: A reduced space interior point strategy for optimization of differential algebraic systems. Comput. Chem. Eng. 24, 39–51 (2000)

    Article  Google Scholar 

  17. Christofides, P.D., Daoutidis, P.: Feedback control of two-time-scale nonlinear systems. Int. J. Control 63, 965–994 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Contou-Carrère, M.N., Baldea, M., Daoutidis, P.: Dynamic precompensation and output feedback control of integrated process networks. Ind. Eng. Chem. Res. 43, 3528–3538 (2004)

    Article  Google Scholar 

  19. Contou-Carrère, M.N., Daoutidis, P.: An output feedback precompensator for nonlinear differential-algebraic-equation systems with control-dependent state-space. IEEE Trans. Automat. Control 50, 1831 (2005)

    Article  MathSciNet  Google Scholar 

  20. Contou-Carrère, M.N., Daoutidis, P.: Model reduction and control of multi-scale reaction-convection processes. Chem. Eng. Sci. 63, 4012 (2007)

    Article  Google Scholar 

  21. Dai, L.: Singular Control Systems. In: Lecture Notes in Control and Information Sciences, vol. 118, Springer, Heidelberg (1989)

    Google Scholar 

  22. Diehl, M., Bock, H.G., Schloder, J.P., Findeisen, R., Nagy, Z., Allgower, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12 577–585 (2002)

    Article  Google Scholar 

  23. Feehery, W.F., Tolsma, J.E., Barton. P.I.: Efficient sensitivity analysis of large-scale differential-algebraic systems. Appl. Numer. Math. 25, 41–54 (1997)

    Google Scholar 

  24. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Findeisen, R., Allgower, F.: Nonlinear model predictive control for index-one DAE systems In: Progress in Systems and Control Theory, vol. 26, pp. 145–161. Birkhauser, Basel (2000)

    Google Scholar 

  26. Fraser, S.J.: The steady state and equilibrium approximations: A geometric picture. J. Chem. Phys. 88, 4732–4738 (1988)

    Article  Google Scholar 

  27. Gani, R., Cameron, I.T.: Modeling for dynamic simulation of chemical processes: The index problem. Chem. Eng. Sci. 47, 1311–1315 (1992)

    Article  Google Scholar 

  28. Gerdts, M.: Direct shooting methods for the numerical solution of higher-index dae optimal control problems. J. Optim. Theory Appl. 117, 267–294 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gerdtzen, Z.P., Daoutidis, P., Hu, W.S.: Non-linear reduction for kinetic models of metabolic reaction networks. Metab. Eng. 6(2), 140–154 (2004)

    Article  Google Scholar 

  30. Hoppensteadt, F.: Properties of solutions of ordinary differential equations with small parameters. Commun. Pure Appl. Math. XXIV(6), 807–840 (1971)

    Google Scholar 

  31. Jogwar, S.S., Baldea, M., Daoutidis, P.: Dynamics and control of process networks with large energy recycle. Ind. Eng. Chem. Res. 48(13), 6087–6097 (2009)

    Article  Google Scholar 

  32. Jogwar, S.S., Baldea, M., Daoutidis, P.: Tight energy integration: Dynamic impact and control advantages. Comput. Chem. Eng. 34(9), 1457–1466 (2010)

    Article  Google Scholar 

  33. Jogwar, S.S., Daoutidis, P.: Dynamics and control of vapor recompression distillation. J. Process Control 19(10), 1737–1750 (2009)

    Article  Google Scholar 

  34. Jogwar, S.S., Daoutidis, P.: Energy flow patterns and control implications for integrated distillation networks. Ind. Eng. Chem. Res. 49(17), 8048–8061 (2010)

    Article  Google Scholar 

  35. Jogwar, S.S., Torres, A.I., Daoutidis, P.: Networks with large solvent recycle: Dynamics, hierarchical control and a biorefinery application. AIChE J. 58(6), 1764–1777 (2012)

    Article  Google Scholar 

  36. Kameswaran, S., Biegler, L.T.: Simultaneous dynamic opimization strategies: Recent advances and challenges. Comput. Chem. Eng. 30, 1560–1575 (2006)

    Article  Google Scholar 

  37. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin-II: A fortran chemical kinetics package for the analysis of gas phase chemical kinetics. In: Sandia Report SAND89-8009B, UC-706, Livermore, CA (1989)

    Google Scholar 

  38. Khalil, H., Kokotovic, P.V.: Control of linear systems with multiparameter singular perturbations. Automatica 15 197–207 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  39. Khalil, H.K.: Nonlinear Systems. 2nd edn. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  40. Kokotovic, P.V., Bensoussan, A., Blankenship, G.: Singular perturbations and asymptotic analysis in control systems. In: Lecture Notes in Control and Information Sciences, vol. 90. Springer, Heidelberg (1987)

    Google Scholar 

  41. Kokotovic, P.V., Khalil, H.K., O’Reilly, J.: Singular Perturbations in Control: Analysis and Design. Academic Press, London (1986)

    Google Scholar 

  42. Kokotovic, P.V., O’Malley, R.E., Sannuti, P.: Singular perturbations and order reduction in control theory - an overview. Automatica 12, 123–132 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kroner, A., Marquardt, W., Gilles, E.D.: Getting around consistent initialization of dae systems. Comput. Chem. Eng. 21, 145–158 (1997)

    Article  Google Scholar 

  44. Kumar, A., Christofides, P.D., Daoutidis, P.: Singular perturbation modeling of nonlinear processes with non-explicit time-scale separation. Chem. Eng. Sci. 53, 1491–1504 (1998)

    Article  Google Scholar 

  45. Kumar, A., Daoutidis, P.: Control of nonlinear differential-algebraic-equation systems with disturbances. Ind. Eng. Chem. Res. 34, 2060–2076 (1995)

    Article  Google Scholar 

  46. Kumar, A., Daoutidis, P.: Feedback control of nonlinear differential-algebraic-equation systems. AIChE J. 41(3), 619–636 (1995)

    Article  MathSciNet  Google Scholar 

  47. Kumar, A., Daoutidis, P.: Dynamic feedback regularization and control of nonlinear differential-algebraic-equation systems. AIChE J. 42, 2175–2198 (1996)

    Article  Google Scholar 

  48. Kumar, A., Daoutidis, P.: High-index dae systems in modeling and control of chemical processes. In: Preprints of IFAC Conference on Control of Industrial Systems, vol. 1, pp. 518–523. Belfort, France (1997)

    Google Scholar 

  49. Kumar, A., Daoutidis, P.: Control of nonlinear differential equation systems. In: Research Notes in Mathematics, vol. 397, Chapman & Hall/CRC, Boca Raton, London, New York, Washington DC (1999)

    Google Scholar 

  50. Kumar, A., Daoutidis, P.: Modeling, analysis and control of ethylene glycol reactive distillation column. AIChE J. 45, 51 (1999)

    Article  Google Scholar 

  51. Kumar, A., Daoutidis, P.: Dynamics and control of process networks with recycle. J. Process Control 12, 475–484 (2002)

    Article  Google Scholar 

  52. Kumar, A., Daoutidis, P.: Nonlinear model reduction and control for high-purity distillation columns. Ind. Eng. Chem. Res. 42, 4495–4505 (2003)

    Article  Google Scholar 

  53. Lam, S.H., Goussis, D.A.: The csp method for simplifying kinetics. J. Chem. Kin. 26, 461–486 (1994)

    Article  Google Scholar 

  54. Lefkopoulos, A., Stadherr, M.A.: Index analysis of unsteady state chemical process systems - ii. strategies for determining the overall flowsheet index. Comput. Chem. Eng. 17, 415–430 (1993)

    Google Scholar 

  55. Li, G., Tomlin, A.S., Rabitz, H., Toth. J.: A general analysis of approximate nonlinear lumping in chemical kinetics. J. Chem. Phys. 101, 1172–1187 (1994)

    Google Scholar 

  56. Li, S., Petzold, L.: Software and algorithms for sensitivity analysis of large-scale differential-algebraic systems. J. Comput. Appl. Math. 125, 131–145 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  57. Maas U., Pope, S.B.: Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)

    Article  Google Scholar 

  58. Marino R., Kokotovic, P.V.: A geometric approach to nonlinear singular perturbed control systems. Automatica 24, 31–41 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  59. Martinson, W.S., Barton, P.I.: A diffferentiation index for partial differential algebraic equations. SIAM J. Sci. Comput. 21, 2295–2315 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  60. O’Malley Jr. R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991)

    Book  MATH  Google Scholar 

  61. Pantelides, C.C., Gritsis, D., Morison, K.R., Sargent, R.W.H.: The mathematical modeling of transient systems using differential-algebraic equations. Comput. Chem. Eng. 12, 449–454 (1988)

    Article  Google Scholar 

  62. Peters, N.: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames. Springer, Berlin (1991)

    Google Scholar 

  63. Petzold, L., Zhu, W.: Model reduction for chemical kinetics: An optimization approach. AIChE J. 45, 869–886 (1999)

    Article  Google Scholar 

  64. Rabitz, H., Kramer, M., Dacol. D.: Sensitivity analysis of chemical kinetics. Annu. Rev. Phys. Chem. 34, 419–461 (1983)

    Google Scholar 

  65. Rhem, A., Allgower, F.: General quadratic performance analysis and synthesis of differential algebraic equation (dae) systems. J. Process Control 12, 467–474 (2002)

    Article  Google Scholar 

  66. Tichonov, A.N.: Systems of differential equations containing a small parameter multiplying the derivative. Mat. Sb. 31, 575–586 (1952)

    Google Scholar 

  67. Turanyi, T., Berces, T., Vajda, S.: Reaction rate analysis of complex kinetic systems. Int. J. Chem. Kinet. 21, 83–99 (1989)

    Article  Google Scholar 

  68. Vieira, R.C., Biscaia, E.C.: Direct methods for consistent initialization of dae systems. Comput. Chem. Eng. 25, 1299–1311 (2001)

    Article  Google Scholar 

  69. Vora, N.P.: Nonlinear model reduction and control of multiple time scale chemical processes: chemical reaction systems and reactive distillation columns. PhD thesis, University of Minnesota - Twin Cities (2000)

    Google Scholar 

  70. Vora, N.P., Contou-Carrère, M.N., Daoutidis, P.: Model reduction of multiple time scale processes in non-standard singularly perturbed form. In: Coarse Graining and Model Reduction Approaches for Multiscale Phenomena. Lecture Notes Series, pp. 99–116. Springer, New York (2006)

    Google Scholar 

  71. Vora, N.P., Daoutidis, P.: Dynamics and control of an ethyl acetate reactive distillation column. Ind. Eng. Chem. Res. 40, 833–849 (2001)

    Article  Google Scholar 

  72. Vora, N.P., Daoutidis, P.: Nonlinear model reduction of chemical reaction systems. AIChE J. 47, 2320–2332 (2001)

    Article  Google Scholar 

  73. Wei, J., Kuo, J.C.W.: A lumping analysis in monomolecular reaction systems. Ind. Eng. Chem. Fund. 8, 114–123 (1969)

    Article  Google Scholar 

  74. Williams, F.A.: The fundamental theory of chemically reactive systems. In: Combustion Theory. Benjamin/Cummings, Menlo Park (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prodromos Daoutidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daoutidis, P. (2015). DAEs in Model Reduction of Chemical Processes: An Overview. In: Ilchmann, A., Reis, T. (eds) Surveys in Differential-Algebraic Equations II. Differential-Algebraic Equations Forum. Springer, Cham. https://doi.org/10.1007/978-3-319-11050-9_2

Download citation

Publish with us

Policies and ethics