Voice Prostheses, Microbial Colonization and Biofilm Formation

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 830)


Total laryngectomy is performed in advanced laryngeal and hypopharyngeal cancer stages and results in reduced quality of life due to the loss of voice and smell, permanent tracheostoma and occasionally dysphagia. Therefore, successful voice rehabilitation is highly beneficial for the patients’ quality of life after surgery. Over the past decades, voice prostheses have evolved to the gold standard in rehabilitation and allow faster and superior voicing results after laryngectomy compared to esophageal speech. Polyspecies biofilm formation has become the limiting factor for device lifetimes and causes prosthesis dysfunction, leakage and in consequence pneumonia, if not replaced immediately. Although major improvements in prosthesis design have been made and scientific insight in the complexity of biofilm evolution and material interaction progresses, the microbial colonization continues to restrict device lifetimes, causing patient discomfort and elevated health costs. However, present scientific findings and advances in technology yield promising future approaches to improve the situation for laryngectomized patients.


Total Laryngectomy Microbial Colonization Voice Prosthesis Maximum Phonation Time Laryngectomized Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bauters TGM, Moerman M, Vermeersch H, Nelis HJ (2002) Colonization of voice prostheses by albicans and non-albicans Candida species. Laryngoscope 112:708–712PubMedCrossRefGoogle Scholar
  2. Bertl K, Zatorska B, Leonhard M, Rechenmacher-Strauss J, Roesner I, Schneider-Stickler B (2013) Oral microbial colonization in laryngectomized patients as a possible cofactor of biofilm formation on their voice prostheses. J Clin Periodontol 40:833–840PubMedCrossRefGoogle Scholar
  3. Biswas S, Van Dijck P, Datta A (2007) Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71:348–376PubMedCentralPubMedCrossRefGoogle Scholar
  4. Boscolo-Rizzo P, Marchiori C, Gava A, Da Mosto MC (2008) The impact of radiotherapy and GERD on in situ lifetime of indwelling voice prostheses. Eur Arch Otorhinolaryngol 265:791–796PubMedCrossRefGoogle Scholar
  5. Bozec A, Poissonnet G, Chamorey E, Demard F, Santini J, Peyrade F, Ortholan C, Benezery K, Thariat J, Sudaka A, Anselme K, Adrey B, Giacchero P, Dassonville O (2009) Results of vocal rehabilitation using tracheoesophageal voice prosthesis after total laryngectomy and their predictive factors. Eur Arch Otorhinolaryngol 267:751–758PubMedCrossRefGoogle Scholar
  6. Cocuzza S, Bonfiglio M, Chiaramonte R, Aprile G, Mistretta A, Grosso G, Serra A (2012) Gastroesophageal reflux disease and postlaryngectomy tracheoesophageal fistula. Eur Arch Otorhinolaryngol 269:1483–1488PubMedCrossRefGoogle Scholar
  7. de Maddalena H, Pfrang H, Schohe R, Zenner HP (1991) Speech intelligibility and psychosocial adaptation in various voice rehabilitation methods following laryngectomy. Laryngorhinootologie 70:562–567PubMedCrossRefGoogle Scholar
  8. Debry C, Dupret-Bories A, Vrana NE, Hemar P, Lavalle P, Schultz P (2014) Laryngeal replacement with an artificial larynx after total laryngectomy: the possibility of restoring larynx functionality in the future. Head Neck. doi: 10.1002/hed.23621
  9. Delsupehe K, Zink I, Lejaegere M, Delaere P (1998) Prospective randomized comparative study of tracheoesophageal voice prosthesis: Blom-Singer versus Provox. Laryngoscope 108:1561–1565PubMedCrossRefGoogle Scholar
  10. Flemming HC (1998) Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym Degrad Stab 59(1–3):309–315CrossRefGoogle Scholar
  11. Garrido CM, Liesa RF, Varela HV, Gálvez MJN (2007) Study of laryngopharyngeal reflux using pH-metering in immediate post-op of laryngectomized patients. Acta Otorrinolaringol Esp 58:284–289CrossRefGoogle Scholar
  12. Harms K, Post WJ, van de Laan KT, van den Hoogen FJA, Eerenstein SEJ, van der Laan BFAM (2011) A prospective randomized multicenter clinical trial of the Provox2 and Groningen Ultra Low Resistance voice prostheses in the rehabilitation of post-laryngectomy patients: a lifetime and preference study. Oral Oncol 47:895–899PubMedCrossRefGoogle Scholar
  13. Hilgers FJM, Ackerstaff AH, Balm AJM, Van Den Brekel MWM, Bing Tan I, Persson J-O (2003) A new problem-solving indwelling voice prosthesis, eliminating the need for frequent Candida- and “Underpressure-” related replacements: Provox ActiValve. Acta Otolaryngol 123:972–979PubMedCrossRefGoogle Scholar
  14. Hotz MA, Baumann A, Schaller I, Zbären P (2002) Success and predictability of provox prosthesis voice rehabilitation. Arch Otolaryngol Head Neck Surg 128:687–691PubMedCrossRefGoogle Scholar
  15. Kania R, Lamers G, Van De Laar N, Dijkhuizen M, Lagendijk E, Tran Ba Huy P, Herman P, Hiemstra P, Grote J, Frijns J, Bloemberg G (2010) Biofilms on tracheoesophageal voice prostheses: a confocal laser scanning microscopy demonstration of mixed bacterial and yeast biofilms. GBIF 26:519–526CrossRefGoogle Scholar
  16. Kress P, Schäfer P, Schwerdtfeger F-P (2006) Clinical use of a voice prosthesis with a flap valve containing silver oxide (Blom-Singer Advantage), biofilm formation, in-situ lifetime and indication. Laryngorhinootologie 85:893–896PubMedCrossRefGoogle Scholar
  17. Kress P, Schäfer P, Schwerdtfeger F-P, Rösler S (2013) Are modern voice prostheses better? A lifetime comparison of 749 voice prostheses. Eur Arch Otorhinolaryngol 271(1):133–140. doi: 10.1007/s00405-013-2611-0 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lam PK-Y, Ho W-K, Ho AC-W, Ng RW-M, Yuen APW, Wei WI (2005) Long-term performance of indwelling tracheoesophageal speaking valves in Chinese patients undergoing laryngectomy. Arch Otolaryngol Head Neck Surg 131:954–958PubMedCrossRefGoogle Scholar
  19. Leonhard M, Reumüller A, Moser D, Bigenzahn W, Schneider-Stickler B (2009) Examination of biofilm related material deterioration on 20 PROVOX2 voice prostheses by scanning electron microscopy. Laryngorhinootologie 88:392–397PubMedCrossRefGoogle Scholar
  20. Leonhard M, Moser D, Reumueller A, Mancusi G, Bigenzahn W, Schneider-Stickler B (2010) Comparison of biofilm formation on new Phonax and Provox 2 voice prostheses – a pilot study. Head Neck 32(7):886–895. doi: 10.1002/hed.21276 PubMedGoogle Scholar
  21. Lorenz KJ, Maier H (2010) Voice rehabilitation after laryngectomy. HNO 58:1174–1183PubMedCrossRefGoogle Scholar
  22. Lorenz KJ, Grieser L, Ehrhart T, Maier H (2010) The management of periprosthetic leakage in the presence of supra-oesophageal reflux after prosthetic voice rehabilitation. Eur Arch Otorhinolaryngol 268:695–702PubMedCrossRefGoogle Scholar
  23. Maves MD, Lingeman RE (1982) Primary vocal rehabilitation using the Blom-Singer and Panje voice prostheses. Ann Otol Rhinol Laryngol 91:458–460PubMedCrossRefGoogle Scholar
  24. Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128PubMedCentralPubMedCrossRefGoogle Scholar
  25. Moukarbel RV, Doyle PC, Yoo JH, Franklin JH, Day AMB, Fung K (2011) Voice-related quality of life (V-RQOL) outcomes in laryngectomees. Head Neck 33:31–36PubMedCrossRefGoogle Scholar
  26. Mozolewski E (1972) Surgical rehabilitation of voice and speech following laryngectomy. Otolaryngol Pol 26:653–661PubMedGoogle Scholar
  27. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428, table of contentsPubMedCentralPubMedCrossRefGoogle Scholar
  28. Op de Coul BM, Hilgers FJ, Balm AJ, Tan IB, Van Den Hoogen FJ, van Tinteren H (2000) A decade of postlaryngectomy vocal rehabilitation in 318 patients: a single Institution’s experience with consistent application of provox indwelling voice prostheses. Arch Otolaryngol Head Neck Surg 126:1320–1328CrossRefGoogle Scholar
  29. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, KvItek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340PubMedCrossRefGoogle Scholar
  30. Pattani KM, Morgan M, Nathan C-AO (2009) Reflux as a cause of tracheoesophageal puncture failure. Laryngoscope 119:121–125PubMedCrossRefGoogle Scholar
  31. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163PubMedCentralPubMedCrossRefGoogle Scholar
  32. Politano AD, Campbell KT, Rosenberger LH, Sawyer RG (2013) Use of silver in the prevention and treatment of infections: silver review. Surg Infect 14:8–20CrossRefGoogle Scholar
  33. Ramage G, Martínez JP, López-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986PubMedCrossRefGoogle Scholar
  34. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2007) Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. J Biomed Mater Res 81B:358–370CrossRefGoogle Scholar
  35. Rolien H (2014) Free MHJBPGJEMHCVDMPRVWMPFWJAMP: biofilm formation on voice prostheses: in vitro influence of probiotics 1–6Google Scholar
  36. Ruhnke M (2006) Epidemiology of Candida albicans infections and role of non-Candida-albicans yeasts. Curr Drug Targets 7:495–504PubMedCrossRefGoogle Scholar
  37. Schäfer P, Klützke N, Schwerdtfeger F-P (2001) Voice restoration with voice prosthesis after total laryngectomy. Assessment of survival time of 378 Provox-1, Provox-2 and Blom-Singer voice prosthesis. Laryngorhinootologie 80:677–681PubMedCrossRefGoogle Scholar
  38. Schouwenburg PF, Eerenstein SE, Grolman W (1998) The VoiceMaster voice prosthesis for the laryngectomized patient. Clin Otolaryngol Allied Sci 23:555–559PubMedCrossRefGoogle Scholar
  39. Schuldt T, Kramp B, Dommerich S (2012) The vocal rehabilitation with ESKA-Herrmann voice prosthesis. A report of a 10 years’ experience. Laryngorhinootologie 91:633–636PubMedGoogle Scholar
  40. Simpson CB, Postma GN, Stone RE, Ossoff RH (1997) Speech outcomes after laryngeal cancer management. Otolaryngol Clin N Am 30:189–205Google Scholar
  41. Singh AV, Vyas V, Patil R, Sharma V, Scopelliti PE et al (2011) Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS One 6(9):e25029. doi: 10.1371/journal.pone.0025029 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Smit CF, Tan J, Mathus-Vliegen LM, Devriese PP, Brandsen M, Grolman W, Schouwenburg PF (1998) High incidence of gastropharyngeal and gastroesophageal reflux after total laryngectomy. Head Neck 20:619–622PubMedCrossRefGoogle Scholar
  43. Soolsma J, Van Den Brekel MW, Ackerstaff AH, Balm AJ, Tan B, Hilgers FJ (2008) Long-term results of Provox ActiValve, solving the problem of frequent Candida- and “Underpressure-” related voice prosthesis replacements. Laryngoscope 118:252–257PubMedCrossRefGoogle Scholar
  44. Terada T, Saeki N, Toh K, Uwa N, Sagawa K, Takayasu S, Sakagami M (2007) Voice rehabilitation with Provox2 voice prosthesis following total laryngectomy for laryngeal and hypopharyngeal carcinoma. Auris Nasus Larynx 34:65–71PubMedCrossRefGoogle Scholar
  45. Tićac B, Tićac R, Rukavina T, Kesovija PG, Pedisić D, Maljevac B, Starčević R (2010) Microbial colonization of tracheoesophageal voice prostheses (Provox2) following total laryngectomy. Eur Arch Otorhinolaryngol 267:1579–1586PubMedCrossRefGoogle Scholar
  46. Tisch M, Lorenz KJ, St Rrle E, Maier H (2003) Lebensqualität laryngektomierter Patienten nach chirurgischer Stimmrehabilitation. HNO 51:467–472PubMedCrossRefGoogle Scholar
  47. Traissac L, Chene G, Devars F, Houliat T, Essalki I, Bekhar H, Rousseau A (2007) Voice rehabilitation after total laryngectomy using the Newvox voice prosthesis. Rev Laryngol Otol Rhinol (Bord) 128:163–172Google Scholar
  48. Van Den Hoogen FJ, Nijdam HF, Veenstra A, Manni JJ (1996) The Nijdam voice prosthesis: a self-retaining valveless voice prosthesis for vocal rehabilitation after total laryngectomy. Acta Otolaryngol 116(6):913–917PubMedCrossRefGoogle Scholar
  49. van der Mei HC, Free RH, Elving GJ, Van Weissenbruch R, Albers FW, Busscher HJ (2000) Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. J Med Microbiol 49:713–718PubMedGoogle Scholar
  50. Van Weissenbruch R, Albers FWJ, Bouckaert S, Nelis HJ, Criel G, Remon JP, Sulter AM (1997) Deterioration of the Provox™ silicone tracheoesophageal voice prosthesis: microbial aspects and structural changes. Acta Otolaryngol 117:452–458PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology and Head and Neck SurgeryMedical University Hospital ViennaViennaAustria

Personalised recommendations