Biofilm-Based Implant Infections in Orthopaedics

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 830)


The demand for joint replacement surgery is continuously increasing with rising costs for hospitals and healthcare systems. Staphylococci are the most prevalent etiological agents of orthopedic infections. After an initial adhesin-mediated implant colonization, Staphylococcus aureus and Staphylococcus epidermidis produce biofilm. Biofilm formation proceeds as a four-step process: (1) initial attachment of bacterial cells; (2) cell aggregation and accumulation in multiple cell layers; (3) biofilm maturation and (4) detachment of cells from the biofilm into a planktonic state to initiate a new cycle of biofilm formation elsewhere. The encasing of bacteria in biofilms gives rise to insuperable difficulties not only in the treatment of the infection, but also in assessing the state and the nature of the infection using traditional cultural methods. Therefore, DNA-based molecular methods have been developed to provide rapid identification of all microbial pathogens. To combat biofilm-centered implant infections, new strategies are being developed, among which anti-infective or infective-resistant materials are at the forefront. Infection-resistant materials can be based on different approaches: (i) modifying the biomaterial surface to give anti-adhesive properties, (ii) doping the material with antimicrobial substances, (iii) combining anti-adhesive and antimicrobial effects in the same coating, (iv) designing materials able to oppose biofilm formation and support bone repair.


Extracellular Polymeric Substance Periprosthetic Joint Infection Periprosthetic Tissue Pseudomonas Quinolone Signaling National Joint Registry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Financial support

 Contribution from the “5 per mille” grant for Health Research to the Rizzoli Orthopaedic Institute is acknowledged.


  1. Allesen-Holm M, Barken KB, Yang L et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128PubMedCrossRefGoogle Scholar
  2. Arciola CR, Radin L, Alvergna P, Cenni E, Pizzoferrato A (1993) Heparin surface treatment of poly(methylmethacrylate) alters adhesion of a Staphylococcus aureus strain: utility of bacterial fatty acid analysis. Biomaterials 14(15):1161–1164PubMedCrossRefGoogle Scholar
  3. Arciola CR, Caramazza R, Pizzoferrato A (1994) In vitro adhesion of Staphylococcus epidermidis on heparin-surface-modified intraocular lenses. J Cataract Refract Surg 20(2):158–161PubMedCrossRefGoogle Scholar
  4. Arciola CR, Maltarello MC, Cenni E, Pizzoferrato A (1995) Disposable contact lenses and bacterial adhesion. In vitro comparison between ionic/high-water content and non-ionic/low-water content lenses. Biomaterials 16:685–690PubMedCrossRefGoogle Scholar
  5. Arciola CR, Montanaro L, Caramazza R, Sassoli V, Cavedagna D (1998) Inhibition of bacterial adherence to a high-water-content polymer by a water-soluble, nonsteroidal, anti-inflammatory drug. J Biomed Mater Res 42(1):1–5PubMedCrossRefGoogle Scholar
  6. Arciola CR, Montanaro L, Moroni A, Giordano M, Pizzoferrato A, Donati ME (1999) Hydroxyapatite-coated orthopaedic screws as infection resistant materials: in vitro study. Biomaterials 20(4):323–327PubMedCrossRefGoogle Scholar
  7. Arciola CR, Baldassarri L, Montanaro L (2001) Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter associated infections. J Clin Microbiol 39(6):2151–2156PubMedCentralPubMedCrossRefGoogle Scholar
  8. Arciola CR, Bustanji Y, Conti M, Campoccia D, Baldassarri L, Samorì B, Montanaro L (2003) Staphylococcus epidermidis-fibronectin binding and its inhibition by heparin. Biomaterials 24(18):3013–3019PubMedCrossRefGoogle Scholar
  9. Arciola CR, An YH, Campoccia D, Donati ME, Montanaro L (2005) Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int J Artif Organs 28:1091–1100PubMedGoogle Scholar
  10. Arciola CR, Baldassarri L, Campoccia D et al (2008) Strong biofilm production, antibiotic multi-resistance and high gelE expression in epidemic clones of Enterococcus faecalis from orthopaedic implant infections. Biomaterials 29(5):580–586PubMedCrossRefGoogle Scholar
  11. Arciola CR, Montanaro L, Costerton JW (2011) New trends in diagnosis and control strategies for implant infections. Int J Artif Organs 34(9):727–736PubMedCrossRefGoogle Scholar
  12. Arciola CR, Hänsch GM, Visai L, Testoni F, Maurer S, Campoccia D, Selan L, Montanaro L (2012a) Interactions of staphylococci with osteoblasts and phagocytes in the pathogenesis of implant-associated osteomyelitis. Int J Artif Organs 35(10):713–726PubMedGoogle Scholar
  13. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW (2012b) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33(26):5967–5982PubMedCrossRefGoogle Scholar
  14. Bagheri M, Beyermann M, Dathe M (2012) Mode of action of cationic antimicrobial peptides defines the tethering position and the efficacy of biocidal surfaces. Bioconjug Chem 23(1):66–74PubMedCrossRefGoogle Scholar
  15. Bustanji Y, Arciola CR, Conti M, Mandello E, Montanaro L, Samorí B (2003) Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proc Natl Acad Sci U S A 100(23):13292–13297PubMedCentralPubMedCrossRefGoogle Scholar
  16. Campoccia D, Arciola CR, Cervellati M, Maltarello MC, Montanaro L (2003) In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorohydroxyapatite-coated substrata with different roughness. Biomaterials 24:587–596PubMedCrossRefGoogle Scholar
  17. Campoccia D, Speziale P, Ravaioli S, Cangini I, Rindi S, Pirini V, Montanaro L, Arciola CR (2009) The presence of both bone sialoprotein-binding protein gene and collagen adhesin gene as a typical virulence trait of the major epidemic cluster in isolates from orthopedic implant infections. Biomaterials 30(34):6621–6628PubMedCrossRefGoogle Scholar
  18. Campoccia D, Montanaro L, Speziale P, Arciola CR (2010) Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 31(25):6363–6377PubMedCrossRefGoogle Scholar
  19. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554PubMedCrossRefGoogle Scholar
  20. Chavakis T, Wiechmann K, Preissner KT, Herrmann M (2005) Staphylococcus aureus interactions with the endothelium: the role of bacterial “secretable expanded repertoire adhesive molecules” (SERAM) in disturbing host defense systems. Thromb Haemost 94(2):278–285PubMedGoogle Scholar
  21. Corvec S, Portillo ME, Pasticci BM, Borens O, Trampuz A (2012) Epidemiology and new developments in the diagnosis of prosthetic joint infection. Int J Artif Organs 35(10):923–934PubMedGoogle Scholar
  22. Costerton JW, DeMeo P (2011) Discussion. The role of biofilms: are we hitting the right target? Plast Reconstr Surg 127(Suppl 1):36S–37SPubMedCrossRefGoogle Scholar
  23. Costerton JW, Veeh R, Shirtliff M, Pasmore M, Post JC, Ehrlich GD (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Investig 112(10):1466–1477PubMedCentralPubMedCrossRefGoogle Scholar
  24. Costerton JW, Montanaro L, Arciola CR (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28(11):1062–1068PubMedGoogle Scholar
  25. Costerton JW, Post JC, Ehrlich GD, Hu FZ, Kreft R, Nistico L, Kathju S, Stoodley P, Hall-Stoodley L, Maale G, James G, Sotereanos N, DeMeo P (2011) New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol 61(2):133–140PubMedCrossRefGoogle Scholar
  26. Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67(10):5427–5433PubMedCentralPubMedGoogle Scholar
  27. Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penadés JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 83:2888–2896CrossRefGoogle Scholar
  28. Della Valle C, Visai L, Santin M, Cigada A, Candiani G, Pezzoli D, Arciola CR, Imbriani M, Chiesa R (2012) A novel antibacterial modification treatment of titanium capable to improve osseointegration. Int J Artif Organs 35(10):864–875PubMedGoogle Scholar
  29. Ehrlich GD, DeMeo P, Costerton JW, Winkler H (eds) (2012) Culture-negative orthopedic biofilm infections. Springer Verlag series on biofilms. Berlin HeidelbergGoogle Scholar
  30. Ehrlich GD, Arciola CR (2012) From Koch’s postulates to biofilm theory. The lesson of Bill Costerton. Int J Artif Organs 35(10):695–699PubMedGoogle Scholar
  31. Ehrlich GD, Post JC (2013) The time is now for gene and genome-based bacterial diagnostics “you say you want a revolution”. JAMA Intern Med 173(15):1405–1406PubMedCrossRefGoogle Scholar
  32. Ehrlich GD, Hu FZ, Shen K, Stoodley P, Post JC (2005) Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Relat Res 437:20–24PubMedCrossRefGoogle Scholar
  33. Ehrlich GD, Ahmed A, Earl J, Hiller NL, Costerton JW, Stoodley P, Post JC, DeMeo P, Hu FZ (2010) The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic infectious processes. FEMS Immunol Med Microbiol 59(3):269–279PubMedCentralPubMedGoogle Scholar
  34. Ehrlich GD, Hu FZ, Sotereanos N, Sewicke J, Parvizi J, Nara PL, Arciola CR (2014) What role do periodontal pathogens play in osteoarthritis and periprosthetic joint infections of the knee? J Appl Biomater Funct Mater 12(1):e13–e20Google Scholar
  35. Esteban J, Sorlí L, Alentorn-Geli E, Puig L, Horcajada JP (2014) Conventional and molecular diagnostic strategies for prosthetic joint infections. Expert Rev Mol Diagn 14(1):83–96PubMedCrossRefGoogle Scholar
  36. Fitzgerald RH Jr (1995) Infected total hip arthroplasty: diagnosis and treatment. J Am Acad Orthop Surg 3(5):249–262PubMedGoogle Scholar
  37. Foster SJ (1995) Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol 177:5723–5725PubMedCentralPubMedGoogle Scholar
  38. Fu J, Ji J, Yuan W, Shen J (2005) Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 26(33):6684–6692PubMedCrossRefGoogle Scholar
  39. Ganss B, Kim RH, Sodek J (1999) Bone sialoprotein. Crit Rev Oral Biol Med 10(1):79–98PubMedCrossRefGoogle Scholar
  40. Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O’Gara JP, Potts JR et al (2010) Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 192:5663–5673PubMedCentralPubMedCrossRefGoogle Scholar
  41. Grandi S, Cassinelli V, Bini M, Saino E, Mustarelli P, Arciola CR, Imbriani M, Visai L (2011) Bone reconstruction: Au nanocomposite bioglasses with antibacterial properties. Int J Artif Organs 34(9):920–928PubMedCrossRefGoogle Scholar
  42. Greene C, McDevitt D, Francois P, Vaudaux PE, Lew DP, Foster TJ (1995) Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. Mol Microbiol 17(6):1143–1152PubMedCrossRefGoogle Scholar
  43. Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechol 24:1551–1557CrossRefGoogle Scholar
  44. Hansen EN, Zmistowski B, Parvizi J (2012) Periprosthetic joint infection: what is on the horizon? Int J Artif Organs 35(10):935–950PubMedGoogle Scholar
  45. Harris LG, El-Bouri K, Johnston S, Rees E, Frommelt L, Siemssen N, Christner M, Davies AP, Rohde H, Mack D (2010) Rapid identification of staphylococci from prosthetic joint infections using MALDI-TOF mass-spectrometry. Int J Artif Organs 33(9):568–574PubMedGoogle Scholar
  46. Hauck CR, Ohlsen K (2006) Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol 9(1):5–11PubMedCrossRefGoogle Scholar
  47. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091PubMedCrossRefGoogle Scholar
  48. Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024PubMedCrossRefGoogle Scholar
  49. Herrmann M, Lai QJ, Albrecht RM, Mosher DF, Proctor RA (1993) Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis 167(2):312–322PubMedCrossRefGoogle Scholar
  50. Hirschhausen N, Schlesier T, Schmidt MA, Götz F, Peters G, Heilmann C (2010) A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol 12:1746–1764PubMedCrossRefGoogle Scholar
  51. Houston P, Rowe SE, Pozzi C, Waters EM, O’Gara JP (2011) Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype. Infect Immun 79:1153–1165PubMedCentralPubMedCrossRefGoogle Scholar
  52. Hunt LP, Ben-Shlomo Y, Clark EM, Dieppe P, Judge A, MacGregor AJ, Tobias JH, Vernon K, Blom AW, National Joint Registry for England, Wales and Northern Ireland (2013) 90-day mortality after 409,096 total hip replacements for osteoarthritis, from the National Joint Registry for England and Wales: a retrospective analysis. Lancet 382(9898):1097–1104PubMedCrossRefGoogle Scholar
  53. Jacovides C, Kreft R, Adeli B, Hozack B, Ehrlich GD, Parvizi J (2012) Successful identification of pathogens by polymerase chain reaction (PCR)-based electron spray ionization time-of-flight mass spectrometry (ESI-TOF-MS) in culture-negative periprosthetic joint infection. J Bone Joint Surg 94(24):2247–2254PubMedCrossRefGoogle Scholar
  54. Kang SJ, Kim DH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides: their physicochemical properties and therapeutic application. Arch Pharm Res 35(3):409–413PubMedCrossRefGoogle Scholar
  55. Kapadia BH, McElroy MJ, Issa K, Johnson AJ, Bozic KJ, Mont MA (2014) The economic impact of periprosthetic infections following total knee arthroplasty at a specialized tertiary-care center. J Arthroplasty 29(5):929–932PubMedCrossRefGoogle Scholar
  56. Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J (2008) Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty 23(7):984–991PubMedCrossRefGoogle Scholar
  57. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27(8 Suppl):61–65PubMedCrossRefGoogle Scholar
  58. Legeay G, Poncin-Epaillard F, Arciola CR (2006) New surfaces with hydrophilic/hydrophobic characteristics in relation to (no)bioadhesion. Int J Artif Organs 29(4):453–461PubMedGoogle Scholar
  59. Leone JM, Hanssen AD (2006) Management of infection at the site of a total knee arthroplasty. Instr Course Lect 55:449–461PubMedGoogle Scholar
  60. Lindeque B, Hartman Z, Noshchenko A, Cruse M (2014) Infection after primary total hip arthroplasty. Orthopedics 37(4):257–265PubMedCrossRefGoogle Scholar
  61. Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178(1):175PubMedCentralPubMedGoogle Scholar
  62. Mack D, Becker P, Chatterjee I, Dobinsky S, Knobloch JK, Peters G, Rohde H, Herrmann M (2004) Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 294(2–3):203–212PubMedCrossRefGoogle Scholar
  63. Montanaro L, Speziale P, Campoccia D, Pirini V, Ravaioli S, Cangini I, Visai L, Arciola CR (2010) Polymorphisms of agr locus correspond to distinct genetic patterns of virulence in Staphylococcus aureus clinical isolates from orthopedic implant infections. J Biomed Mater Res A 94(3):825–832PubMedGoogle Scholar
  64. Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR (2011a) Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 6(11):1329–1349PubMedCrossRefGoogle Scholar
  65. Montanaro L, Testoni F, Poggi A, Visai L, Speziale P, Arciola CR (2011b) Emerging pathogenetic mechanisms of the implant-related osteomyelitis by Staphylococcus aureus. Int J Artif Organs 34(9):781–788PubMedCrossRefGoogle Scholar
  66. Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, Arciola CR (2011c) Extracellular DNA in biofilms. Int J Artif Organs 34(9):824–831PubMedCrossRefGoogle Scholar
  67. Nemes S, Gordon M, Rogmark C, Rolfson O (2014) Projections of total hip replacement in Sweden from 2013 to 2030. Acta Orthop [Epub ahead of print] PubMed PMID: 24758323Google Scholar
  68. Neoh KG, Kang ET (2011) Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications. ACS Appl Mater Interfaces 3(8):2808–2819PubMedCrossRefGoogle Scholar
  69. O’Gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188PubMedCrossRefGoogle Scholar
  70. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR, Infectious Diseases Society of America (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56(1):e1–e25PubMedCrossRefGoogle Scholar
  71. Parvizi J, Walinchus L, Adeli B (2011) Molecular diagnostics in periprosthetic joint infection. Int J Artif Organs 34(9):847–855PubMedCrossRefGoogle Scholar
  72. Parvizi J, Erkocak OF, Della Valle CJ (2014) Culture-negative periprosthetic joint infection. J Bone Joint Surg Am 96(5):430–436PubMedCrossRefGoogle Scholar
  73. Patti JM, Allen BL, McGavin MJ, Höök M (1994a) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617PubMedCrossRefGoogle Scholar
  74. Patti JM, Bremell T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Ryde’n C et al (1994b) The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun 62(1):152–161PubMedCentralPubMedGoogle Scholar
  75. Potter A, Ceotto H, Giambiagi-Demarval M, dos Santos KR, Nes IF, Bastos Mdo C (2009) The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections. J Microbiol 47:319–326PubMedCrossRefGoogle Scholar
  76. Puig-Verdié L, Alentorn-Geli E, González-Cuevas A, Sorlí L, Salvadó M, Alier A, Pelfort X, Portillo ME, Horcajada JP (2013) Implant sonication increases the diagnostic accuracy of infection in patients with delayed, but not early, orthopaedic implant failure. Bone Joint J 95-B(2):244–249PubMedCrossRefGoogle Scholar
  77. Qin Z, Ou Y, Yang L et al (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153(7):2083–2092PubMedCrossRefGoogle Scholar
  78. Rak M, Barlič-Maganja D, Kavčič M, Trebše R, Cőr A (2013) Comparison of molecular and culture method in diagnosis of prosthetic joint infection. FEMS Microbiol Lett 343(1):42–48PubMedCrossRefGoogle Scholar
  79. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S et al (2007) Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720PubMedCrossRefGoogle Scholar
  80. Ryde’n C, Tung HS, Nikolaev V, Engström A, Oldberg A (1997) Staphylococcus aureus causing osteomyelitis binds to a nonapeptide sequence in bone sialoprotein. Biochem J 327(Pt3):825–829Google Scholar
  81. Schinsky MF, Della Valle CJ, Sporer SM, Paprosky WG (2008) Perioperative testing for joint infection in patients undergoing revision total hip arthroplasty. J Bone Joint Surg Am 90(9):1869–1875PubMedCrossRefGoogle Scholar
  82. Sculco TP (1993) The economic impact of infected total joint arthroplasty. Instr Course Lect 42:349–351PubMedGoogle Scholar
  83. Sinha B, Francois PP, Nu¨sse O, Foti M, Hartford OM, Vaudaux P et al (1999) Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell Microbiol 1(2):101–117PubMedCrossRefGoogle Scholar
  84. Sittka A, Vogel J (2008) A glimpse at the evolution of virulence control. Cell Host Microbe 4:310–312PubMedCrossRefGoogle Scholar
  85. Speziale P, Visai L, Rindi S, Pietrocola G, Provenza G, Provenzano M (2008) Prevention and treatment of Staphylococcus biofilms. Curr Med Chem 15(30):3185–3195PubMedCrossRefGoogle Scholar
  86. Speziale P, Pietrocola G, Rindi S, Provenzano M, Provenza G, Di Poto A, Visai L, Arciola CR (2009) Structural and functional role of Staphylococcus aureus surface components recognizing adhesive matrix molecules of the host. Future Microbiol 4(10):1337–1352PubMedCrossRefGoogle Scholar
  87. Tan H, Peng Z, Li Q, Xu X, Guo S, Tang T (2012) The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant Staphylococcus. Biomaterials 33:365–377PubMedCrossRefGoogle Scholar
  88. Tande AJ, Patel R (2014) Prosthetic joint infection. Clin Microbiol Rev 27(2):302–345PubMedCrossRefGoogle Scholar
  89. Thomas VC, Hancock LE (2009) Suicide and fratricide in bacterial biofilms. Int J Artif Organs 32(9):537–544, ReviewPubMedGoogle Scholar
  90. Thomas VC, Thurlow LR, Boyle D, Hancock LE (2008) Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190(16):5690–5698PubMedCentralPubMedCrossRefGoogle Scholar
  91. Thurlow LR, Hanke ML, Fritz T et al (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186(11):6585–6596PubMedCentralPubMedCrossRefGoogle Scholar
  92. Tormo MA, Knecht E, Götz F, Lasa I, Penadés JR (2005) Bap dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151:2465–2475PubMedCrossRefGoogle Scholar
  93. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R (2006) Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination. J Clin Microbiol 44(2):628–631PubMedCentralPubMedCrossRefGoogle Scholar
  94. Tsaras G, Osmon DR, Mabry T, Lahr B, St Sauveur J, Yawn B, Kurland R, Berbari EF (2012) Incidence, secular trends, and outcomes of prosthetic joint infection: a population-based study, Olmsted county, Minnesota, 1969–2007. Infect Control Hosp Epidemiol 33:1207–1212PubMedCentralPubMedCrossRefGoogle Scholar
  95. Vergara-Irigaray M, Valle J, Merino N, Latasa C, García B, Ruiz de Los Mozos I et al (2009) Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect Immun 77:3978–3991PubMedCentralPubMedCrossRefGoogle Scholar
  96. Whitehouse JD, Friedman ND, Kirkland KB, Richardson WJ, Sexton DJ (2002) The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect Control Hosp Epidemiol 23(4):183–189PubMedCrossRefGoogle Scholar
  97. Wolcott R, Dowd S (2011) The role of biofilms: are we hitting the right target? Plast Reconstr Surg 127(Suppl 1):28S–35SPubMedCrossRefGoogle Scholar
  98. Zhao L, Hu Y, Xu D, Cai K (2014) Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblas ts functions and inhibit bacteria adhesion. Colloids Surf B Biointerfaces [Epub ahead of print].Google Scholar
  99. Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351:1645–1654PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Research Unit on Implant InfectionsRizzoli Orthopaedic InstituteBolognaItaly
  2. 2.Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
  3. 3.Center for Genomic Sciences, Institute for Molecular Medicine and Infections DiseaseDrexel University College of MedicinePhiladelphiaUSA
  4. 4.Department of Microbiology and ImmunologyDrexel University College of MedicinePhiladelphiaUSA
  5. 5.Department of OtolaryngologyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations