Advertisement

Biofilm Formation by Clinical Isolates and Its Relevance to Clinical Infections

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 830)

Abstract

Reports of biofilms have increased exponentially in the scientific literature over the past two decades, yet the vast majority of these are basic science investigations with limited clinical relevance. Biofilm studies involving clinical isolates are most often surveys of isolate collections, but suffer from lack of standardization in methodologies for producing and assessing biofilms. In contrast, more informative clinical studies correlating biofilm formation to patient data have infrequently been reported. In this chapter, biofilm surveys of clinical isolates of aerobic and anaerobic bacteria, mycobacteria, and Candida are reviewed, as well as those pertaining to the unique situation of cystic fibrosis. In addition, the influence of host components on in vitro biofilm formation, as well as published studies documenting the clinical impact of biofilms in human infections, are presented.

Keywords

Cystic Fibrosis Cystic Fibrosis Patient Fibronectin Binding Protein Bloodstream Isolate Multiple Drug Resistant Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the United States Department of the Army or the United States Department of Defense.

References

  1. Aaron SD, Ferris W, Ramotar K, Vandemheen K, Chan F, Saginur R (2002) Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J Clin Microbiol 40:4172–4179PubMedCentralPubMedGoogle Scholar
  2. Abi-Chacra EA, Souza LO, Cruz LP, Braga-Silva LA, Goncalves DS, Sodre CL, Ribeiro MD, Seabra SH, Figueiredo-Carvalho MH, Barbedo LS, Zancope-Oliveira RM, Ziccardi M, Santos AL (2013) Phenotypical properties associated with virulence from clinical isolates belonging to the Candida parapsilosis complex. FEMS Yeast Res 13:831–848PubMedGoogle Scholar
  3. Abraham NM, Jefferson KK (2010) A low molecular weight component of serum inhibits biofilm formation in Staphylococcus aureus. Microb Pathog 49:388–391PubMedCentralPubMedGoogle Scholar
  4. Akers KS, Mende K, Cheatle KA, Zera WC, Yu X, Beckius ML, Aggarwal D, Li P, Sanchez CJ, Wenke JC, Weintrob AC, Tribble DR, Murray CK, Infectious Disease Clinical Research Program Trauma Infectious Disease Outcomes Study Group (2014) Biofilms and persistent wound infections in United States military trauma patients: a case-control analysis. BMC Infect Dis 14:190PubMedGoogle Scholar
  5. Akiyama H, Ueda M, Kanzaki H, Tada J, Arata J (1997) Biofilm formation of Staphylococcus aureus strains isolated from impetigo and furuncle: role of fibrinogen and fibrin. J Dermatol Sci 16:2–10PubMedGoogle Scholar
  6. Alnuaimi AD, O’Brien-Simpson NM, Reynolds EC, Mccullough MJ (2013) Clinical isolates and laboratory reference Candida species and strains have varying abilities to form biofilms. FEMS Yeast Res 13:689–699PubMedGoogle Scholar
  7. Aly R, Levit S (1987) Adherence of Staphylococcus aureus to squamous epithelium: role of fibronectin and teichoic acid. Rev Infect Dis 9(Suppl 4):S341–S350PubMedGoogle Scholar
  8. Ando E, Monden K, Mitsuhata R, Kariyama R, Kumon H (2004) Biofilm formation among methicillin-resistant Staphylococcus aureus isolates from patients with urinary tract infection. Acta Med Okayama 58:207–214PubMedGoogle Scholar
  9. Badihi Hauslich L, Sela MN, Steinberg D, Rosen G, Kohavi D (2013) The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. Clin Oral Implants Res 24(Suppl A100):49–56PubMedGoogle Scholar
  10. Bangar R, Mamatha B (2008) Identification of enteroaggregative Escherichia coli in infants with acute diarrhea based on biofilm production in Manipal, south India. Indian J Med Sci 62:8–12PubMedGoogle Scholar
  11. Bedran TB, Azelmat J, Spolidorio DP, Grenier D (2013) Fibrinogen-induced streptococcus mutans biofilm formation and adherence to endothelial cells. Biomed Res Int 2013:431465PubMedGoogle Scholar
  12. Beenken KE, Blevins JS, Smeltzer MS (2003) Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 71:4206–4211PubMedCentralPubMedGoogle Scholar
  13. Bendouah Z, Barbeau J, Hamad WA, Desrosiers M (2006) Use of an in vitro assay for determination of biofilm-forming capacity of bacteria in chronic rhinosinusitis. Am J Rhinol 20:434–438PubMedGoogle Scholar
  14. Bertl K, Zatorska B, Leonhard M, Matejka M, Schneider-Stickler B (2012) Anaerobic and microaerophilic pathogens in the biofilm formation on voice prostheses: a pilot study. Laryngoscope 122:1035–1039PubMedGoogle Scholar
  15. Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sorensen SR, Moser C, Kuhl M, Jensen PO, Hoiby N (2013) The in vivo biofilm. Trends Microbiol 21:466–474PubMedGoogle Scholar
  16. Bonifait L, Grignon L, Grenier D (2008) Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance. Appl Environ Microbiol 74:4969–4972PubMedCentralPubMedGoogle Scholar
  17. Borghi E, Romagnoli S, Fuchs BB, Cirasola D, Perdoni F, Tosi D, Braidotti P, Bulfamante G, Morace G, Mylonakis E (2014) Correlation between Candida albicans biofilm formation and invasion of the invertebrate host Galleria mellonella. Future Microbiol 9:163–173PubMedGoogle Scholar
  18. Bosio S, Leekha S, Gamb SI, Wright AJ, Terrell CL, Miller DV (2012) Mycobacterium fortuitum prosthetic valve endocarditis: a case for the pathogenetic role of biofilms. Cardiovasc Pathol 21:361–364PubMedGoogle Scholar
  19. Boyer JM, Blatz PJ, Akers KS, Okulicz JF, Chung KK, Renz EM, Hospenthal DR, Murray CK (2010) Nontuberculous mycobacterium infection in a burn ICU patient. Burns 36:e136–e139PubMedGoogle Scholar
  20. Bridges M Jr, Morris D, Hall JR, Deitch EA (1987) Effects of wound exudates on in vitro immune parameters. J Surg Res 43:133–138PubMedGoogle Scholar
  21. Caraher E, Duff C, Mullen T, Mc Keon S, Murphy P, Callaghan M, Mcclean S (2007) Invasion and biofilm formation of Burkholderia dolosa is comparable with Burkholderia cenocepacia and Burkholderia multivorans. J Cyst Fibros 6:49–56PubMedGoogle Scholar
  22. Carter G, Wu M, Drummond DC, Bermudez LE (2003) Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J Med Microbiol 52:747–752PubMedGoogle Scholar
  23. Carter G, Young LS, Bermudez LE (2004) A subinhibitory concentration of clarithromycin inhibits Mycobacterium avium biofilm formation. Antimicrob Agents Chemother 48:4907–4910PubMedCentralPubMedGoogle Scholar
  24. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776PubMedCentralPubMedGoogle Scholar
  25. Chang P, Aronson DL, Borenstein DG, Kessler CM (1995) Coagulant proteins and thrombin generation in synovial fluid: a model for extravascular coagulation. Am J Hematol 50:79–83PubMedGoogle Scholar
  26. Chen HH, Liu X, Ni C, Lu YP, Xiong GY, Lu YY, Wang SQ (2012a) Bacterial biofilms in chronic rhinosinusitis and their relationship with inflammation severity. Auris Nasus Larynx 39:169–174PubMedGoogle Scholar
  27. Chen P, Abercrombie JJ, Jeffrey NR, Leung KP (2012b) An improved medium for growing Staphylococcus aureus biofilm. J Microbiol Methods 90:115–118PubMedGoogle Scholar
  28. Chuard C, Vaudaux P, Waldvogel FA, Lew DP (1993) Susceptibility of Staphylococcus aureus growing on fibronectin-coated surfaces to bactericidal antibiotics. Antimicrob Agents Chemother 37:625–632PubMedCentralPubMedGoogle Scholar
  29. Cirasola D, Sciota R, Vizzini L, Ricucci V, Morace G, Borghi E (2013) Experimental biofilm-related Candida infections. Future Microbiol 8:799–805PubMedGoogle Scholar
  30. Clark RA, Quinn JH, Winn HJ, Lanigan JM, Dellepella P, Colvin RB (1982) Fibronectin is produced by blood vessels in response to injury. J Exp Med 156:646–651PubMedGoogle Scholar
  31. Conger NG, O’Connell RJ, Laurel VL, Olivier KN, Graviss EA, Williams-Bouyer N, Zhang Y, Brown-Elliott BA, Wallace RJ Jr (2004) Mycobacterium simae outbreak associated with a hospital water supply. Infect Control Hosp Epidemiol 25:1050–1055PubMedGoogle Scholar
  32. Coutinho CP, De Carvalho CC, Madeira A, Pinto-De-Oliveira A, Sa-Correia I (2011) Burkholderia cenocepacia phenotypic clonal variation during a 3.5-year colonization in the lungs of a cystic fibrosis patient. Infect Immun 79:2950–2960PubMedCentralPubMedGoogle Scholar
  33. Cremet L, Corvec S, Bemer P, Bret L, Lebrun C, Lesimple B, Miegeville AF, Reynaud A, Lepelletier D, Caroff N (2012) Orthopaedic-implant infections by Escherichia coli: molecular and phenotypic analysis of the causative strains. J Infect 64:169–175PubMedGoogle Scholar
  34. Del Prado G, Ruiz V, Naves P, Rodriguez-Cerrato V, Soriano F, Del Carmen Ponte M (2010) Biofilm formation by Streptococcus pneumoniae strains and effects of human serum albumin, ibuprofen, N-acetyl-l-cysteine, amoxicillin, erythromycin, and levofloxacin. Diagn Microbiol Infect Dis 67:311–318PubMedGoogle Scholar
  35. Deligianni E, Pattison S, Berrar D, Ternan NG, Haylock RW, Moore JE, Elborn SJ, Dooley JS (2010) Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol 10:38PubMedCentralPubMedGoogle Scholar
  36. Ding X, Liu Z, Su J, Yan D (2014) Human serum inhibits adhesion and biofilm formation in Candida albicans. BMC Microbiol 14:80PubMedCentralPubMedGoogle Scholar
  37. Domingue PA, Sadhu K, Costerton JW, Bartlett K, Chow AW (1991) The human vagina: normal flora considered as an in situ tissue-associated, adherent biofilm. Genitourin Med 67:226–231PubMedCentralPubMedGoogle Scholar
  38. Donelli G, Vuotto C, Cardines R, Mastrantonio P (2012) Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol 65:318–325PubMedGoogle Scholar
  39. Edmiston CE Jr, Krepel CJ, Marks RM, Rossi PJ, Sanger J, Goldblatt M, Graham MB, Rothenburger S, Collier J, Seabrook GR (2013) Microbiology of explanted suture segments from infected and noninfected surgical patients. J Clin Microbiol 51:417–421PubMedCentralPubMedGoogle Scholar
  40. Espersen F, Wilkinson BJ, Gahrn-Hansen B, Thamdrup Rosdahl V, Clemmensen I (1990) Attachment of staphylococci to silicone catheters in vitro. APMIS 98:471–478PubMedGoogle Scholar
  41. Esteban J, Molina-Manso D, Spiliopoulou I, Cordero-Ampuero J, Fernandez-Roblas R, Foka A, Gomez-Barrena E (2010) Biofilm development by clinical isolates of Staphylococcus spp. from retrieved orthopedic prostheses. Acta Orthop 81:674–679PubMedCentralPubMedGoogle Scholar
  42. Falkinham JO 3rd (2010) Hospital water filters as a source of Mycobacterium avium complex. J Med Microbiol 59:1198–1202PubMedGoogle Scholar
  43. Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR (2009) Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A 106:16393–16399PubMedCentralPubMedGoogle Scholar
  44. Feldmeier H, Heukelbach J, Eisele M, Sousa AQ, Barbosa LM, Carvalho CB (2002) Bacterial superinfection in human tungiasis. Trop Med Int Health 7:559–564PubMedGoogle Scholar
  45. Fiori B, Posteraro B, Torelli R, Tumbarello M, Perlin DS, Fadda G, Sanguinetti M (2011) In vitro activities of anidulafungin and other antifungal agents against biofilms formed by clinical isolates of different Candida and Aspergillus species. Antimicrob Agents Chemother 55:3031–3035PubMedCentralPubMedGoogle Scholar
  46. Foreman A, Wormald PJ (2010) Different biofilms, different disease? A clinical outcomes study. Laryngoscope 120:1701–1706PubMedGoogle Scholar
  47. Franca A, Carvalhais V, Maira-Litran T, Vilanova M, Cerca N, Pier G (2014) Alterations in the Staphylococcus epidermidis biofilm transcriptome following interaction with whole human blood. Pathog Dis 70:444–448PubMedGoogle Scholar
  48. Francois P, Schrenzel J, Stoerman-Chopard C, Favre H, Herrmann M, Foster TJ, Lew DP, Vaudaux P (2000) Identification of plasma proteins adsorbed on hemodialysis tubing that promote Staphylococcus aureus adhesion. J Lab Clin Med 135:32–42PubMedGoogle Scholar
  49. Fromantin I, Seyer D, Watson S, Rollot F, Elard J, Escande MC, De Rycke Y, Kriegel I, Larreta Garde V (2013) Bacterial floras and biofilms of malignant wounds associated with breast cancers. J Clin Microbiol 51:3368–3373PubMedCentralPubMedGoogle Scholar
  50. Gad GF, El-Feky MA, El-Rehewy MS, Hassan MA, Abolella H, El-Baky RM (2009) Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J Infect Dev Ctries 3:342–351PubMedGoogle Scholar
  51. Garcia-Castillo M, Morosini MI, Valverde A, Almaraz F, Baquero F, Canton R, Del Campo R (2007) Differences in biofilm development and antibiotic susceptibility among Streptococcus pneumoniae isolates from cystic fibrosis samples and blood cultures. J Antimicrob Chemother 59:301–304PubMedGoogle Scholar
  52. Garza-Gonzalez E, Morfin-Otero R, Martinez-Vazquez MA, Gonzalez-Diaz E, Gonzalez-Santiago O, Rodriguez-Noriega E (2011) Microbiological and molecular characterization of human clinical isolates of Staphylococcus cohnii, Staphylococcus hominis, and Staphylococcus sciuri. Scand J Infect Dis 43:930–936PubMedGoogle Scholar
  53. George NP, Ymele-Leki P, Konstantopoulos K, Ross JM (2009) Differential binding of biofilm-derived and suspension-grown Staphylococcus aureus to immobilized platelets in shear flow. J Infect Dis 199:633–640PubMedGoogle Scholar
  54. Girard LP, Ceri H, Gibb AP, Olson M, Sepandj F (2010) MIC versus MBEC to determine the antibiotic sensitivity of Staphylococcus aureus in peritoneal dialysis peritonitis. Perit Dial Int 30:652–656PubMedGoogle Scholar
  55. Gokce G, Cerikcioglu N, Yagci A (2007) Acid proteinase, phospholipase, and biofilm production of Candida species isolated from blood cultures. Mycopathologia 164:265–269PubMedGoogle Scholar
  56. Greco C, Martincic I, Gusinjac A, Kalab M, Yang AF, Ramirez-Arcos S (2007) Staphylococcus epidermidis forms biofilms under simulated platelet storage conditions. Transfusion 47:1143–1153PubMedGoogle Scholar
  57. Greendyke R, Byrd TF (2008) Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob Agents Chemother 52:2019–2026PubMedCentralPubMedGoogle Scholar
  58. Guaglianone E, Cardines R, Vuotto C, Di Rosa R, Babini V, Mastrantonio P, Donelli G (2010) Microbial biofilms associated with biliary stent clogging. FEMS Immunol Med Microbiol 59:410–420PubMedGoogle Scholar
  59. Gupta A, Clauss H (2009) Prosthetic joint infection with Mycobacterium avium complex in a solid organ transplant recipient. Transpl Infect Dis 11:537–540PubMedGoogle Scholar
  60. Harakuni SU, Karadesai SG, Jamadar N (2012) Biofilm production by Candida: comparison of bloodstream isolates with cervical isolates. Indian J Microbiol 52:504–506PubMedCentralPubMedGoogle Scholar
  61. Hasan F, Xess I, Wang X, Jain N, Fries BC (2009) Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect 11:753–761PubMedCentralPubMedGoogle Scholar
  62. Haussler S, Ziegler I, Lottel A, Von Gotz F, Rohde M, Wehmhohner D, Saravanamuthu S, Tummler B, Steinmetz I (2003) Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52:295–301PubMedGoogle Scholar
  63. Henderson JM, Stein SF, Kutner M, Wiles MB, Ansley JD, Rudman D (1980) Analysis of twenty-three plasma proteins in ascites. The depletion of fibrinogen and plasminogen. Ann Surg 192:738–742PubMedCentralPubMedGoogle Scholar
  64. Herrmann M, Vaudaux PE, Pittet D, Auckenthaler R, Lew PD, Schumacher-Perdreau F, Peters G, Waldvogel FA (1988) Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158:693–701PubMedGoogle Scholar
  65. Herrmann M, Lai QJ, Albrecht RM, Mosher DF, Proctor RA (1993) Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis 167:312–322PubMedGoogle Scholar
  66. Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C (2005) Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 43:5085–5090PubMedCentralPubMedGoogle Scholar
  67. Horan TC, Gaynes RP (2004) Surveillance of nosocomial infections. In: Mayhall C (ed) Hospital epidemiology and infection control. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  68. Hourigan LA, Linfoot JA, Chung KK, Dubick MA, Rivera RL, Jones JA, Salinas RD, Mann EA, Wade CE, Wolf SE, Baskin TW (2010) Loss of protein, immunoglobulins, and electrolytes in exudates from negative pressure wound therapy. Nutr Clin Pract 25:510–516PubMedGoogle Scholar
  69. Igarashi Y, Skoner DP, Doyle WJ, White MV, Fireman P, Kaliner MA (1993) Analysis of nasal secretions during experimental rhinovirus upper respiratory infections. J Allergy Clin Immunol 92:722–731PubMedGoogle Scholar
  70. Jaffe EA (1987) Cell biology of endothelial cells. Hum Pathol 18:234–239PubMedGoogle Scholar
  71. Jagnow J, Clegg S (2003) Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149:2397–2405PubMedGoogle Scholar
  72. Jain N, Kohli R, Cook E, Gialanella P, Chang T, Fries BC (2007) Biofilm formation by and antifungal susceptibility of Candida isolates from urine. Appl Environ Microbiol 73:1697–1703PubMedCentralPubMedGoogle Scholar
  73. Johansen TB, Agdestein A, Olsen I, Nilsen SF, Holstad G, Djonne B (2009) Biofilm formation by Mycobacterium avium isolates originating from humans, swine and birds. BMC Microbiol 9:159PubMedCentralPubMedGoogle Scholar
  74. Jung CJ, Yeh CY, Shun CT, Hsu RB, Cheng HW, Lin CS, Chia JS (2012) Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. J Infect Dis 205:1066–1075PubMedGoogle Scholar
  75. Kanamaru S, Kurazono H, Terai A, Monden K, Kumon H, Mizunoe Y, Ogawa O, Yamamoto S (2006) Increased biofilm formation in Escherichia coli isolated from acute prostatitis. Int J Antimicrob Agents 28(Suppl 1):S21–S25PubMedGoogle Scholar
  76. Kawamura H, Nishi J, Imuta N, Tokuda K, Miyanohara H, Hashiguchi T, Zenmyo M, Yamamoto T, Ijiri K, Kawano Y, Komiya S (2011) Quantitative analysis of biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) strains from patients with orthopaedic device-related infections. FEMS Immunol Med Microbiol 63:10–15PubMedGoogle Scholar
  77. Kirov SM, Webb JS, O’May CY, Reid DW, Woo JK, Rice SA, Kjelleberg S (2007) Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153:3264–3274PubMedGoogle Scholar
  78. Klingenberg C, Aarag E, Ronnestad A, Sollid JE, Abrahamsen TG, Kjeldsen G, Flaegstad T (2005) Coagulase-negative staphylococcal sepsis in neonates. Association between antibiotic resistance, biofilm formation and the host inflammatory response. Pediatr Infect Dis J 24:817–822PubMedGoogle Scholar
  79. Krom BP, Cohen JB, Mcelhaney-Feser G, Busscher HJ, Van Der Mei HC, Cihlar RL (2009) Conditions for optimal Candida biofilm development in microtiter plates. Methods Mol Biol 499:55–62PubMedGoogle Scholar
  80. Kuhn DM, Mikherjee PK, Clark TA, Pujol C, Chandra J, Hajjeh RA, Warnock DW, Soil DR, Ghannoum MA (2004) Candida parapsilosis characterization in an outbreak setting. Emerg Infect Dis 10:1074–1081PubMedCentralPubMedGoogle Scholar
  81. Kumar CP, Menon T (2006) Biofilm production by clinical isolates of Candida species. Med Mycol 44:99–101PubMedGoogle Scholar
  82. Kumari V, Banerjee T, Kumar P, Pandey S, Tilak R (2013) Emergence of non-albicans Candida among candidal vulvovaginitis cases and study of their potential virulence factors, from a tertiary care center, North India. Indian J Pathol Microbiol 56:144–147PubMedGoogle Scholar
  83. Kwon AS, Park GC, Ryu SY, Lim DH, Lim DY, Choi CH, Park Y, Lim Y (2008) Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus. Int J Antimicrob Agents 32:68–72PubMedGoogle Scholar
  84. Kwon AS, Lim DH, Shin HJ, Park G, Reu JH, Park HJ, Kim J, Lim Y (2013) The N3 subdomain in a domain of fibronectin-binding protein B isotype I is an independent risk determinant predictive for biofilm formation of Staphylococcus aureus clinical isolates. J Microbiol 51:499–505PubMedGoogle Scholar
  85. Lee B, Haagensen JA, Ciofu O, Andersen JB, Hoiby N, Molin S (2005) Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43:5247–5255PubMedCentralPubMedGoogle Scholar
  86. Lee B, Schjerling CK, Kirkby N, Hoffmann N, Borup R, Molin S, Hoiby N, Ciofu O (2011) Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients. APMIS 119:263–274PubMedGoogle Scholar
  87. Lehnhardt M, Jafari HJ, Druecke D, Steinstraesser L, Steinau HU, Klatte W, Schwake R, Homann HH (2005) A qualitative and quantitative analysis of protein loss in human burn wounds. Burns 31:159–167PubMedGoogle Scholar
  88. Leung JW, Liu Y, Chan RC, Tang Y, Mina Y, Cheng AF, Silva J Jr (2000) Early attachment of anaerobic bacteria may play an important role in biliary stent blockage. Gastrointest Endosc 52:725–729PubMedGoogle Scholar
  89. Liesse Iyamba JM, Seil M, Devleeschouwer M, Takaisi Kikuni NB, Dehaye JP (2011) Study of the formation of a biofilm by clinical strains of Staphylococcus aureus. Biofouling 27:811–821PubMedGoogle Scholar
  90. Lim Y, Shin HJ, Kwon AS, Reu JH, Park G, Kim J (2013) Predictive genetic risk markers for strong biofilm-forming Staphylococcus aureus: fnbB gene and SCCmec type III. Diagn Microbiol Infect Dis 76:539–541PubMedGoogle Scholar
  91. Lower SK, Lamlertthon S, Casillas-Ituarte NN, Lins RD, Yongsunthon R, Taylor ES, Dibartola AC, Edmonson C, Mcintyre LM, Reller LB, Que YA, Ros R, Lower BH, Fowler VG Jr (2011) Polymorphisms in fibronectin binding protein A of Staphylococcus aureus are associated with infection of cardiovascular devices. Proc Natl Acad Sci U S A 108:18372–18377PubMedCentralPubMedGoogle Scholar
  92. Lutz L, Pereira DC, Paiva RM, Zavascki AP, Barth AL (2012) Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm. BMC Microbiol 12:196PubMedCentralPubMedGoogle Scholar
  93. Malachowa N, Whitney AR, Kobayashi SD, Sturdevant DE, Kennedy AD, Braughton KR, Shabb DW, Diep BA, Chambers HF, Otto M, Deleo FR (2011) Global changes in Staphylococcus aureus gene expression in human blood. PLoS One 6:e18617PubMedCentralPubMedGoogle Scholar
  94. Malcolm KC, Nichols EM, Caceres SM, Kret JE, Martiniano SL, Sagel SD, Chan ED, Caverly L, Solomon GM, Reynolds P, Bratton DL, Taylor-Cousar JL, Nichols DP, Saavedra MT, Nick JA (2013) Mycobacterium abscessus induces a limited pattern of neutrophil activation that promotes pathogen survival. PLoS One 8:e57402PubMedCentralPubMedGoogle Scholar
  95. Marcelino SL, Gaetti-Jardim E Jr, Nakano V, Canonico LA, Nunes FD, Lotufo RF, Pustiglioni FE, Romito GA, Avila-Campos MJ (2010) Presence of periodontopathic bacteria in coronary arteries from patients with chronic periodontitis. Anaerobe 16:629–632PubMedGoogle Scholar
  96. Martin DE, Reece MC, Maher JE, Reese AC (1988) Tissue debris at the injury site is coated by plasma fibronectin and subsequently removed by tissue macrophages. Arch Dermatol 124:226–229PubMedGoogle Scholar
  97. Martin-De-Hijas NZ, Garcia-Almeida D, Ayala G, Fernandez-Roblas R, Gadea I, Celdran A, Gomez-Barrena E, Esteban J (2009) Biofilm development by clinical strains of non-pigmented rapidly growing mycobacteria. Clin Microbiol Infect 15:931–936PubMedGoogle Scholar
  98. Martinez JA, Soto S, Fabrega A, Almela M, Mensa J, Soriano A, Marco F, Jimenez De Anta MT, Vila J (2006) Relationship of phylogenetic background, biofilm production, and time to detection of growth in blood culture vials with clinical variables and prognosis associated with Escherichia coli bacteremia. J Clin Microbiol 44:1468–1474PubMedCentralPubMedGoogle Scholar
  99. Mccourt J, O’Halloran DP, Mccarthy H, O’Gara JP, Geoghegan JA (2014) Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett 353:157–164PubMedGoogle Scholar
  100. Melo AS, Bizerra FC, Freymuller E, Arthington-Skaggs BA, Colombo AL (2011) Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex. Med Mycol 49:253–262PubMedGoogle Scholar
  101. Miller GJ, Howarth DJ, Attfield JC, Cooke CJ, Nanjee MN, Olszewski WL, Morrissey JH, Miller NE (2000) Haemostatic factors in human peripheral afferent lymph. Thromb Haemost 83:427–432PubMedGoogle Scholar
  102. Mohamed JA, Huang DB, Jiang ZD, Dupont HL, Nataro JP, Belkind-Gerson J, Okhuysen PC (2007) Association of putative enteroaggregative Escherichia coli virulence genes and biofilm production in isolates from travelers to developing countries. J Clin Microbiol 45:121–126PubMedCentralPubMedGoogle Scholar
  103. Moriyama S, Hotomi M, Shimada J, Billal DS, Fujihara K, Yamanaka N (2009) Formation of biofilm by Haemophilus influenzae isolated from pediatric intractable otitis media. Auris Nasus Larynx 36:525–531PubMedGoogle Scholar
  104. Moskowitz SM, Foster JM, Emerson J, Burns JL (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922PubMedCentralPubMedGoogle Scholar
  105. Moskowitz SM, Emerson JC, Mcnamara S, Shell RD, Orenstein DM, Rosenbluth D, Katz MF, Ahrens R, Hornick D, Joseph PM, Gibson RL, Aitken ML, Benton WW, Burns JL (2011) Randomized trial of biofilm testing to select antibiotics for cystic fibrosis airway infection. Pediatr Pulmonol 46:184–192PubMedCentralPubMedGoogle Scholar
  106. Murga R, Miller JM, Donlan RM (2001) Biofilm formation by gram-negative bacteria on central venous catheter connectors: effect of conditioning films in a laboratory model. J Clin Microbiol 39:2294–2297PubMedCentralPubMedGoogle Scholar
  107. Naves P, Del Prado G, Huelves L, Rodriguez-Cerrato V, Ruiz V, Ponte MC, Soriano F (2010) Effects of human serum albumin, ibuprofen and N-acetyl-L-cysteine against biofilm formation by pathogenic Escherichia coli strains. J Hosp Infect 76:165–170PubMedGoogle Scholar
  108. Nishiuchi Y, Tamura A, Kitada S, Taguri T, Matsumoto S, Tateishi Y, Yoshimura M, Ozeki Y, Matsumura N, Ogura H, Maekura R (2009) Mycobacterium avium complex organisms predominantly colonize in the bathtub inlets of patients’ bathrooms. Jpn J Infect Dis 62:182–186PubMedGoogle Scholar
  109. Nodaira Y, Ikeda N, Kobayashi K, Watanabe Y, Inoue T, Gen S, Kanno Y, Nakamoto H, Suzuki H (2008) Risk factors and cause of removal of peritoneal dialysis catheter in patients on continuous ambulatory peritoneal dialysis. Adv Perit Dial 24:65–68PubMedGoogle Scholar
  110. O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O’Gara JP (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850PubMedCentralPubMedGoogle Scholar
  111. O’Neill E, Humphreys H, O’Gara JP (2009) Carriage of both the fnbA and fnbB genes and growth at 37 degrees C promote FnBP-mediated biofilm development in meticillin-resistant Staphylococcus aureus clinical isolates. J Med Microbiol 58:399–402PubMedGoogle Scholar
  112. Okee MS, Joloba ML, Okello M, Najjuka FC, Katabazi FA, Bwanga F, Nanteza A, Kateete DP (2012) Prevalence of virulence determinants in Staphylococcus epidermidis from ICU patients in Kampala, Uganda. J Infect Dev Ctries 6:242–250PubMedGoogle Scholar
  113. Oliver-Kozup H, Martin KH, Schwegler-Berry D, Green BJ, Betts C, Shinde AV, Van De Water L, Lukomski S (2013) The group A streptococcal collagen-like protein-1, Scl1, mediates biofilm formation by targeting the extra domain A-containing variant of cellular fibronectin expressed in wounded tissue. Mol Microbiol 87:672–689PubMedCentralPubMedGoogle Scholar
  114. Paiva LC, Vidigal PG, Donatti L, Svidzinski TI, Consolaro ME (2012) Assessment of in vitro biofilm formation by Candida species isolates from vulvovaginal candidiasis and ultrastructural characteristics. Micron 43:497–502PubMedGoogle Scholar
  115. Pal Z, Urban E, Dosa E, Pal A, Nagy E (2005) Biofilm formation on intrauterine devices in relation to duration of use. J Med Microbiol 54:1199–1203PubMedGoogle Scholar
  116. Pandelidis K, Mccarthy A, Chesko KL, Viscardi RM (2013) Role of biofilm formation in Ureaplasma antibiotic susceptibility and development of bronchopulmonary dysplasia in preterm neonates. Pediatr Infect Dis J 32:394–398PubMedCentralPubMedGoogle Scholar
  117. Pannanusorn S, Fernandez V, Romling U (2013) Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses 56:264–272PubMedGoogle Scholar
  118. Pishchany G, Mccoy AL, Torres VJ, Krause JC, Crowe JE Jr, Fabry ME, Skaar EP (2010) Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe 8:544–550PubMedCentralPubMedGoogle Scholar
  119. Pompilio A, Crocetta V, Confalone P, Nicoletti M, Petrucca A, Guarnieri S, Fiscarelli E, Savini V, Piccolomini R, Di Bonaventura G (2010) Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol 10:102PubMedCentralPubMedGoogle Scholar
  120. Pompilio A, Pomponio S, Crocetta V, Gherardi G, Verginelli F, Fiscarelli E, Dicuonzo G, Savini V, D’Antonio D, Di Bonaventura G (2011) Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: genome diversity, biofilm formation, and virulence. BMC Microbiol 11:159PubMedCentralPubMedGoogle Scholar
  121. Presterl E, Grisold AJ, Reichmann S, Hirschl AM, Georgopoulos A, Graninger W (2005) Viridans streptococci in endocarditis and neutropenic sepsis: biofilm formation and effects of antibiotics. J Antimicrob Chemother 55:45–50PubMedGoogle Scholar
  122. Prigitano A, Dho G, Lazzarini C, Ossi C, Cavanna C, Tortorano AM, Group E-FS (2012) Biofilm production by Candida isolates from a survey of invasive fungal infections in Italian intensive care units. J Chemother 24:61–63PubMedGoogle Scholar
  123. Prince AA, Steiger JD, Khalid AN, Dogrhamji L, Reger C, Eau Claire S, Chiu AG, Kennedy DW, Palmer JN, Cohen NA (2008) Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol 22:239–245PubMedGoogle Scholar
  124. Pynnonen M, Stephenson RE, Schwartz K, Hernandez M, Boles BR (2011) Hemoglobin promotes Staphylococcus aureus nasal colonization. PLoS Pathog 7:e1002104PubMedCentralPubMedGoogle Scholar
  125. Reiter KC, Tg DSP, Cf DEO, D’Azevedo PA (2011) High biofilm production by invasive multiresistant staphylococci. APMIS 119:776–781PubMedGoogle Scholar
  126. Revdiwala S, Rajdev BM, Mulla S (2012) Characterization of bacterial etiologic agents of biofilm formation in medical devices in critical care setup. Crit Care Res Pract 2012:945805PubMedCentralPubMedGoogle Scholar
  127. Rhodes ER, Shoemaker CJ, Menke SM, Edelmann RE, Actis LA (2007) Evaluation of different iron sources and their influence in biofilm formation by the dental pathogen Actinobacillus actinomycetemcomitans. J Med Microbiol 56:119–128PubMedGoogle Scholar
  128. Rose SJ, Bermudez LE (2014) Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection. Infect Immun 82:405–412PubMedCentralPubMedGoogle Scholar
  129. Rothfork JM, Dessus-Babus S, Van Wamel WJ, Cheung AL, Gresham HD (2003) Fibrinogen depletion attenuates Staphyloccocus aureus infection by preventing density-dependent virulence gene up-regulation. J Immunol 171:5389–5395PubMedGoogle Scholar
  130. Ruiz V, Rodriguez-Cerrato V, Huelves L, Del Prado G, Naves P, Ponte C, Soriano F (2011) Adherence of Streptococcus pneumoniae to polystyrene plates and epithelial cells and the antiadhesive potential of albumin and xylitol. Pediatr Res 69:23–27PubMedGoogle Scholar
  131. Ruiz LS, Khouri S, Hahn RC, Da Silva EG, De Oliveira VK, Gandra RF, Paula CR (2013) Candidemia by species of the Candida parapsilosis complex in children’s hospital: prevalence, biofilm production and antifungal susceptibility. Mycopathologia 175:231–239PubMedGoogle Scholar
  132. Sacristan B, Blanco MT, Galan-Ladero MA, Blanco J, Perez-Giraldo C, Gomez-Garcia AC (2011) Aspartyl proteinase, phospholipase, hemolytic activities and biofilm production of Candida albicans isolated from bronchial aspirates of ICU patients. Med Mycol 49:94–97PubMedGoogle Scholar
  133. Salo J, Sevander JJ, Tapiainen T, Ikaheimo I, Pokka T, Koskela M, Uhari M (2009) Biofilm formation by Escherichia coli isolated from patients with urinary tract infections. Clin Nephrol 71:501–507PubMedGoogle Scholar
  134. Samimi DB, Bielory BP, Miller D, Johnson TE (2013) Microbiologic trends and biofilm growth on explanted periorbital biomaterials: a 30-year review. Ophthal Plast Reconstr Surg 29:376–381PubMedGoogle Scholar
  135. Sanchez CJ Jr, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK (2013) Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis 13:47PubMedCentralPubMedGoogle Scholar
  136. Schultz MJ (2004) Macrolide activities beyond their antimicrobial effects: macrolides in diffuse panbronchiolitis and cystic fibrosis. J Antimicrob Chemother 54:21–28PubMedGoogle Scholar
  137. Schulze-Robbecke R, Fischeder R (1989) Mycobacteria in biofilms. Zentralbl Hyg Umweltmed 188:385–390PubMedGoogle Scholar
  138. Sela MN, Badihi L, Rosen G, Steinberg D, Kohavi D (2007) Adsorption of human plasma proteins to modified titanium surfaces. Clin Oral Implants Res 18:630–638PubMedGoogle Scholar
  139. Shanks RM, Meehl MA, Brothers KM, Martinez RM, Donegan NP, Graber ML, Cheung AL, O’Toole GA (2008) Genetic evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Infect Immun 76:2469–2477PubMedCentralPubMedGoogle Scholar
  140. Shenkman B, Rubinstein E, Cheung AL, Brill GE, Dardik R, Tamarin I, Savion N, Varon D (2001) Adherence properties of Staphylococcus aureus under static and flow conditions: roles of agr and sar loci, platelets, and plasma ligands. Infect Immun 69:4473–4478PubMedCentralPubMedGoogle Scholar
  141. Shin JH, Kee SJ, Shin MG, Kim SH, Shin DH, Lee SK, Suh SP, Ryang DW (2002) Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 40:1244–1248PubMedCentralPubMedGoogle Scholar
  142. Simoni P, Wiatrak BJ (2004) Microbiology of stents in laryngotracheal reconstruction. Laryngoscope 114:364–367PubMedGoogle Scholar
  143. Singh JA, Vessely MB, Harmsen WS, Schleck CD, Melton LJ 3rd, Kurland RL, Berry DJ (2010) A population-based study of trends in the use of total hip and total knee arthroplasty, 1969–2008. Mayo Clin Proc 85:898–904PubMedCentralPubMedGoogle Scholar
  144. Smith K, Perez A, Ramage G, Lappin D, Gemmell CG, Lang S (2008) Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. J Med Microbiol 57:1018–1023PubMedGoogle Scholar
  145. Smyth AR, Cifelli PM, Ortori CA, Righetti K, Lewis S, Erskine P, Holland ED, Givskov M, Williams P, Camara M, Barrett DA, Knox A (2010) Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis–a pilot randomized controlled trial. Pediatr Pulmonol 45:356–362PubMedGoogle Scholar
  146. Swidsinski A, Mendling W, Loening-Baucke V, Ladhoff A, Swidsinski S, Hale LP, Lochs H (2005) Adherent biofilms in bacterial vaginosis. Obstet Gynecol 106:1013–1023PubMedGoogle Scholar
  147. Swidsinski A, Mendling W, Loening-Baucke V, Swidsinski S, Dorffel Y, Scholze J, Lochs H, Verstraelen H (2008) An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol 198(97):e1–e6PubMedGoogle Scholar
  148. Swidsinski A, Dorffel Y, Loening-Baucke V, Schilling J, Mendling W (2011) Response of Gardnerella vaginalis biofilm to 5 days of moxifloxacin treatment. FEMS Immunol Med Microbiol 61:41–46PubMedGoogle Scholar
  149. Takeda Y (1966) Studies of the metabolism and distribution of fibrinogen in healthy men with autologous 125-I-labeled fibrinogen. J Clin Invest 45:103–111PubMedCentralPubMedGoogle Scholar
  150. Tapiainen T, Kujala T, Kaijalainen T, Ikaheimo I, Saukkoriipi A, Renko M, Salo J, Leinonen M, Uhari M (2010) Biofilm formation by Streptococcus pneumoniae isolates from paediatric patients. APMIS 118:255–260PubMedGoogle Scholar
  151. Tatar EC, Tatar I, Ocal B, Korkmaz H, Saylam G, Ozdek A, Celik HH (2012) Prevalence of biofilms and their response to medical treatment in chronic rhinosinusitis without polyps. Otolaryngol Head Neck Surg 146:669–675PubMedGoogle Scholar
  152. Tavanti A, Hensgens LA, Mogavero S, Majoros L, Senesi S, Campa M (2010) Genotypic and phenotypic properties of Candida parapsilosis sensu strictu strains isolated from different geographic regions and body sites. BMC Microbiol 10:203PubMedCentralPubMedGoogle Scholar
  153. Tedjo C, Neoh KG, Kang ET, Fang N, Chan V (2007) Bacteria-surface interaction in the presence of proteins and surface attached poly(ethylene glycol) methacrylate chains. J Biomed Mater Res A 82:479–491PubMedGoogle Scholar
  154. Tortorano AM, Prigitano A, Biraghi E, Viviani MA, Group F-ECS (2005) The European Confederation of Medical Mycology (ECMM) survey of candidaemia in Italy: in vitro susceptibility of 375 Candida albicans isolates and biofilm production. J Antimicrob Chemother 56:777–779PubMedGoogle Scholar
  155. Tosun I, Akyuz Z, Guler NC, Gulmez D, Bayramoglu G, Kaklikkaya N, Arikan-Akdagli S, Aydin F (2013) Distribution, virulence attributes and antifungal susceptibility patterns of Candida parapsilosis complex strains isolated from clinical samples. Med Mycol 51:483–492PubMedGoogle Scholar
  156. Tribble DR, Conger NG, Fraser S, Gleeson TD, Wilkins K, Antonille T, Weintrob A, Ganesan A, Gaskins LJ, Li P, Grandits G, Landrum ML, Hospenthal DR, Millar EV, Blackbourne LH, Dunne JR, Craft D, Mende K, Wortmann GW, Herlihy R, Mcdonald J, Murray CK (2011) Infection-associated clinical outcomes in hospitalized medical evacuees after traumatic injury: trauma infectious disease outcome study. J Trauma 71:S33–S42PubMedGoogle Scholar
  157. Tumbarello M, Fiori B, Trecarichi EM, Posteraro P, Losito AR, De Luca A, Sanguinetti M, Fadda G, Cauda R, Posteraro B (2012) Risk factors and outcomes of candidemia caused by biofilm-forming isolates in a tertiary care hospital. PLoS One 7:e33705PubMedCentralPubMedGoogle Scholar
  158. Tunney MM, Patrick S, Curran MD, Ramage G, Hanna D, Nixon JR, Gorman SP, Davis RI, Anderson N (1999) Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol 37:3281–3290PubMedCentralPubMedGoogle Scholar
  159. Vaudaux P, Pittet D, Haeberli A, Huggler E, Nydegger UE, Lew DP, Waldvogel FA (1989) Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis 160:865–875PubMedGoogle Scholar
  160. Violante TL, Haase EM, Vickerman MM (2013) Collagen-binding streptococcal surface proteins influence the susceptibility of biofilm cells to endodontic antimicrobial solutions. J Endod 39:370–374PubMedGoogle Scholar
  161. Wagner C, Aytac S, Hansch GM (2011) Biofilm growth on implants: bacteria prefer plasma coats. Int J Artif Organs 34:811–817PubMedGoogle Scholar
  162. Wakimoto N, Nishi J, Sheikh J, Nataro JP, Sarantuya J, Iwashita M, Manago K, Tokuda K, Yoshinaga M, Kawano Y (2004) Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli. Am J Trop Med Hyg 71:687–690PubMedGoogle Scholar
  163. Waldrop R, Mclaren A, Calara F, Mclemore, R (2014) Biofilm growth has a threshold response to glucose in vitro. Clin Orthop Relat Res 472:3305–3310Google Scholar
  164. Walker JN, Horswill AR (2012) A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma. Front Cell Infect Microbiol 2:39PubMedCentralPubMedGoogle Scholar
  165. Wallace RJ Jr, Iakhiaeva E, Williams MD, Brown-Elliott BA, Vasireddy S, Vasireddy R, Lande L, Peterson DD, Sawicki J, Kwait R, Tichenor WS, Turenne C, Falkinham JO 3rd (2013) Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilm samples of patients in the United States with Mycobacterium avium complex respiratory disease. J Clin Microbiol 51:1747–1752PubMedCentralPubMedGoogle Scholar
  166. Wang X, Lunsdorf H, Ehren I, Brauner A, Romling U (2010) Characteristics of biofilms from urinary tract catheters and presence of biofilm-related components in Escherichia coli. Curr Microbiol 60:446–453PubMedGoogle Scholar
  167. Watts RE, Hancock V, Ong CL, Vejborg RM, Mabbett AN, Totsika M, Looke DF, Nimmo GR, Klemm P, Schembri MA (2010) Escherichia coli isolates causing asymptomatic bacteriuria in catheterized and noncatheterized individuals possess similar virulence properties. J Clin Microbiol 48:2449–2458PubMedCentralPubMedGoogle Scholar
  168. Wells VM, Hearn TC, Mccaul KA, Anderton SM, Wigg AE, Graves SE (2002) Changing incidence of primary total hip arthroplasty and total knee arthroplasty for primary osteoarthritis. J Arthroplasty 17:267–273PubMedGoogle Scholar
  169. Whiley H, Keegan A, Giglio S, Bentham R (2012) Mycobacterium avium complex – the role of potable water in disease transmission. J Appl Microbiol 113:223–232PubMedGoogle Scholar
  170. Wu K, Yau YC, Matukas L, Waters V (2013) Biofilm compared to conventional antimicrobial susceptibility of Stenotrophomonas maltophilia Isolates from cystic fibrosis patients. Antimicrob Agents Chemother 57:1546–1548PubMedCentralPubMedGoogle Scholar
  171. Yamazaki Y, Danelishvili L, Wu M, Hidaka E, Katsuyama T, Stang B, Petrofsky M, Bildfell R, Bermudez LE (2006) The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol 8:806–814PubMedGoogle Scholar
  172. Yi K, Rasmussen AW, Gudlavalleti SK, Stephens DS, Stojiljkovic I (2004) Biofilm formation by Neisseria meningitidis. Infect Immun 72:6132–6138PubMedCentralPubMedGoogle Scholar
  173. You H, Zhuge P, Li D, Shao L, Shi H, Du H (2011) Factors affecting bacterial biofilm expression in chronic rhinosinusitis and the influences on prognosis. Am J Otolaryngol 32:583–590PubMedGoogle Scholar
  174. Zautner AE, Krause M, Stropahl G, Holtfreter S, Frickmann H, Maletzki C, Kreikemeyer B, Pau HW, Podbielski A (2010) Intracellular persisting Staphylococcus aureus is the major pathogen in recurrent tonsillitis. PLoS One 5:e9452PubMedCentralPubMedGoogle Scholar
  175. Zhan C, Baine WB, Sedrakyan A, Steiner C (2008) Cardiac device implantation in the United States from 1997 through 2004: a population-based analysis. J Gen Intern Med 23(Suppl 1):13–19PubMedCentralPubMedGoogle Scholar
  176. Zhang Z, Kofonow JM, Finkelman BS, Doghramji L, Chiu AG, Kennedy DW, Cohen NA, Palmer JN (2011) Clinical factors associated with bacterial biofilm formation in chronic rhinosinusitis. Otolaryngol Head Neck Surg 144:457–462PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Extremity Trauma and Regenerative Medicine Task AreaUnited States Army Institute of Surgical ResearchHoustonUSA
  2. 2.Infectious Disease ServiceBrooke Army Medical CenterHoustonUSA

Personalised recommendations