Black Hole Algorithm and Its Applications

  • Santosh Kumar
  • Deepanwita Datta
  • Sanjay Kumar Singh
Part of the Studies in Computational Intelligence book series (SCI, volume 575)


Bio-inspired computation is a field of study that connects together numerous subfields of connectionism (neural network), social behavior, emergence field of artificial intelligence and machine learning algorithms for complex problem optimization. Bio-inspired computation is motivated by nature and over the last few years, it has encouraged numerous advance algorithms and set of computational tools for dealing with complex combinatorial optimization problems. Black Hole is a new bio-inspired metaheuristic approach based on observable fact of black hole phenomena. It is a population based algorithmic approach like genetic algorithm (GAs), ant colony optimization (ACO) algorithm, particle swarm optimization (PSO), firefly and other bio-inspired computation algorithms. The objective of this book chapter is to provide a comprehensive study of black hole approach and its applications in different research fields like data clustering problem, image processing, data mining, computer vision, science and engineering. This chapter provides with the stepping stone for future researches to unveil how metaheuristic and bio-inspired commutating algorithms can improve the solutions of hard or complex problem of optimization.


Metaheuristic Black hole Swarm intelligence K-means Clustering 


  1. 1.
    Tan, X., Bhanu, B.: Fingerprint matching by genetic algorithms. Pattern Recogn. 39, 465–477 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Karakuzu, C.: Fuzzy controller training using particle swarm optimization for nonlinear system control. ISA Trans. 47(2), 229–239 (2008)CrossRefGoogle Scholar
  3. 3.
    Rajabioun, R.: Cuckoo optimization algorithm. Elsevier Appl. Soft Comput. 11, 5508–5518 (2011)CrossRefGoogle Scholar
  4. 4.
    Tsai Hsing, C., Lin, Yong-H: Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior. Appl. Soft Comput. Elsevier 1, 5367–5374 (2011)CrossRefGoogle Scholar
  5. 5.
    Baojiang, Z., Shiyong, L.: Ant colony optimization algorithm and its application to neu ro-fuzzy controller design. J. Syst. Eng. Electron. 18, 603–610 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  7. 7.
    Farmer, J.D., et al.: The immune system, adaptation and machine learning. Phys. D Nonlinear Phenom. Elsevier 22(1–3), 187–204 (1986)Google Scholar
  8. 8.
    Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf. Sci. 177, 3918–3937 (2007)CrossRefGoogle Scholar
  9. 9.
    Kirkpatrick, S., Gelatto, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Tang, K.S., Man, K.F., Kwong, S., He, Q.: Genetic algorithms and their applications. IEEE Sig. Process. Mag. 3(6), 22–37 (1996)CrossRefGoogle Scholar
  11. 11.
    Du, Weilin, Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 178, 3096–3109 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3, 82–102 (1999)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Yi, Z., Wu, H., Ye, M., Chen, K.: A tabu search approach for the minimum sum-of-squares clustering problem. Inf. Sci. 178(12), 2680–2704 (2008)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kim, T.H., Maruta, I., Sugie, T.: Robust PID controller tuning based on the constrained particle swarm optimization. J. Autom. Sciencedirect 44(4), 1104–1110 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Cordon, O., Santamarı, S., Damas, J.: A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm. Pattern Recogn. Lett. 27, 1191–1200 (2006)CrossRefGoogle Scholar
  16. 16.
    Yang, X.S.: Firefly algorithms for multimodal optimization, In: Proceeding of Stochastic Algorithms: Foundations and Applications (SAGA), 2009 (2009) Google Scholar
  17. 17.
    Kalinlia, A., Karabogab, N.: Artificial immune algorithm for IIR filter design. Eng. Appl. Artif. Intell. 18, 919–929 (2005)CrossRefGoogle Scholar
  18. 18.
    Lin, Y.L., Chang, W.D., Hsieh, J.G.: A particle swarm optimization approach to nonlinear rational filter modeling. Expert Syst. Appl. 34, 1194–1199 (2008)CrossRefGoogle Scholar
  19. 19.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  20. 20.
    Jackson, D.E.,  Ratnieks, F.L.W.: Communication in ants. Curr. Biol. 16, R570–R574 (2006)CrossRefGoogle Scholar
  21. 21.
    Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579–581 (1989)CrossRefGoogle Scholar
  22. 22.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Networks 4, 1942–1948 (1995)Google Scholar
  23. 23.
    Yang, X. S.: 2010, ‘Nature-inspired metaheuristic algorithms’, Luniver PressGoogle Scholar
  24. 24.
    Tarasewich, p, McMullen, P.R.: Swarm intelligence: power in numbers. Commun. ACM 45, 62–67 (2002)CrossRefGoogle Scholar
  25. 25.
    Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)CrossRefGoogle Scholar
  26. 26.
    Yang, X.S.: Firefly algorithm. Engineering Optimization, pp. 221–230 (2010)Google Scholar
  27. 27.
    Yang, X.S.: Bat algorithm for multi-objective optimization. Int. J. Bio-inspired Comput. 3(5), 267–274 (2011)Google Scholar
  28. 28.
    Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177, 5033–5049 (2007)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University (2005)Google Scholar
  30. 30.
    Ellabib, I., Calamari, P., Basir, O.: Exchange strategies for multiple ant colony system. Inf. Sci. 177, 1248–1264 (2007)CrossRefGoogle Scholar
  31. 31.
    Hamzaçebi, C.: Improving genetic algorithms performance by local search for continuous function optimization. Appl. Math. Comput. 96(1), 309–317 (2008)CrossRefGoogle Scholar
  32. 32.
    Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178, 4421–4433 (2008)CrossRefGoogle Scholar
  33. 33.
    Lazar, A.: Heuristic knowledge discovery for archaeological data using genetic algorithms and rough sets, Heuristic and Optimization for Knowledge Discovery, IGI Global, pp. 263–278 (2014)Google Scholar
  34. 34.
    Russell, S.J., Norvig, P.: Artificial Intelligence a Modern Approach. Prentice Hall, Upper Saddle River (2010). 1132Google Scholar
  35. 35.
    Fred, W.: Glover, Manuel Laguna, Tabu Search, 1997, ISBN: 079239965XGoogle Scholar
  36. 36.
    Christian, B., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surveys (CSUR) 35(3), 268–308 (2003)CrossRefGoogle Scholar
  37. 37.
    Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. Syst. Man Cybern. Part B 34(1), 539–557 (2008)CrossRefGoogle Scholar
  38. 38.
    Deb, K.: Optimization for Engineering Design: Algorithms and Examples, Computer-Aided Design. PHI Learning Pvt. Ltd., New Delhi (2009)Google Scholar
  39. 39.
    Rashedi, E.: Gravitational Search Algorithm. M.Sc. Thesis, Shahid Bahonar University of Kerman, Kerman (2007)Google Scholar
  40. 40.
    Shah-Hosseini, H.: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int. J. Bio-inspired Comput. 1(1), 71–79 (2009)CrossRefGoogle Scholar
  41. 41.
    Dos Santos, C.L., et al.: A multiobjective firefly approach using beta probability. IEE Trans. Magn. 49(5), 2085–2088 (2013)Google Scholar
  42. 42.
    Talbi, E.G.: Metaheuristics: from design to implementation, vol. 74, p. 500. Wiley, London (2009)CrossRefGoogle Scholar
  43. 43.
    Giacconi, R., Kaper, L., Heuvel, E., Woudt, P.: Black hole research past and future. In: Black Holes in Binaries and Galactic Nuclei: Diagnostics. Demography and Formation, pp. 3–15. Springer, Berlin, Heidelberg (2001)Google Scholar
  44. 44.
    Pickover, C.: Black Holes: A Traveler’s Guide. Wiley, London (1998)Google Scholar
  45. 45.
    Frolov, V.P., Novikov, I.D.: Phys. Rev. D. 42, 1057 (1990)Google Scholar
  46. 46.
    Schutz, B. F.: Gravity from the Ground Up. Cambridge University Press, Cambridge. ISBN 0-521-45506-5 (2003)Google Scholar
  47. 47.
    Davies, P.C.W.: Thermodynamics of Black Holes. Reports on Progress in Physics, Rep. Prog. Phys. vol. 41 Printed in Great Britain (1978)Google Scholar
  48. 48.
    Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativity 1(1998), 6 (1998)MathSciNetGoogle Scholar
  49. 49.
    Nemati, M., Momeni, H., Bazrkar, N.: Binary black holes algorithm. Int. J. Comput. Appl. 79(6), 36–42 (2013)Google Scholar
  50. 50.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  51. 51.
    Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012)CrossRefGoogle Scholar
  52. 52.
    El-Abd, M.: Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf. Sci. 182, 243–263 (2012)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Ghosh, S., Das, S., Roy, S., Islam, M.S.K., Suganthan, P.N.: A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization. Inf. Sci. 182, 199–219 (2012)CrossRefGoogle Scholar
  54. 54.
    Fox, B., Xiang, W., Lee, H.: Industrial applications of the ant colony optimization algorithm. Int. J. Adv. Manuf. Technol. 31, 805–814 (2007)CrossRefGoogle Scholar
  55. 55.
    Geem, Z., Cisty, M.: Application of the harmony search optimization in irrigation. Recent Advances in Harmony Search Algorithm’, pp. 123–134. Springer, Berlin (2010)CrossRefGoogle Scholar
  56. 56.
    Selim, S.Z., Ismail, M.A.: K-means-type algorithms: a generalized convergence theorem and characterization of local optimality pattern analysis and machine intelligence. IEEE Trans. PAMI 6, 81–87 (1984)CrossRefMATHGoogle Scholar
  57. 57.
    Wang, J., Peng, H., Shi, P.: An optimal image watermarking approach based on a multi-objective genetic algorithm. Inf. Sci. 181, 5501–5514 (2011)CrossRefGoogle Scholar
  58. 58.
    Picard, D., Revel, A., Cord, M.: An application of swarm intelligence to distributed image retrieval. Inf. Sci. 192, 71–81 (2012)CrossRefGoogle Scholar
  59. 59.
    Chaturvedi, D.: Applications of genetic algorithms to load forecasting problem. Springer, Berlin, pp. 383–402 (2008) (Journal of Soft Computing)Google Scholar
  60. 60.
    Christmas, J., Keedwell, E., Frayling, T.M., Perry, J.R.B.: Ant colony optimization to identify genetic variant association with type 2 diabetes. Inf. Sci. 181, 1609–1622 (2011)CrossRefGoogle Scholar
  61. 61.
    Guo, Y.W., Li, W.D., Mileham, A.R., Owen, G.W.: Applications of particle swarm optimization in integrated process planning and scheduling. Robot. Comput.-Integr. Manuf. Elsevier 25(2), 280–288 (2009)CrossRefGoogle Scholar
  62. 62.
    Rana, S., Jasola, S., Kumar, R.: A review on particle swarm optimization algorithms and their applications to data clustering. Artif. Intell. Rev. 35, 211–222 (2011)CrossRefGoogle Scholar
  63. 63.
    Yeh, W.C.: Novel swarm optimization for mining classification rules on thyroid gland data. Inf. Sci. 197, 65–76 (2012)CrossRefGoogle Scholar
  64. 64.
    Zhang, Y., Gong, D.W., Ding, Z.: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf. Sci. 192, 213–227 (2012)CrossRefGoogle Scholar
  65. 65.
    Marinakis, Y., Marinaki, M., Dounias, G.: Honey bees mating optimization algorithm for the Euclidean traveling salesman problem. Inf. Sci. 181, 4684–4698 (2011)CrossRefMathSciNetGoogle Scholar
  66. 66.
    Anderberg, M.R.: Cluster analysis for application. Academic Press, New York (1973)Google Scholar
  67. 67.
    Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)MATHGoogle Scholar
  68. 68.
    Valizadegan, H., Jin, R., Jain, A.K.: Semi-supervised boosting for multi-class classification. 19th European Conference on Machine Learning (ECM), pp. 15–19 (2008)Google Scholar
  69. 69.
    Chris, D., Xiaofeng, He: Cluster merging and splitting in hierarchical clustering algorithms. Proc. IEEE ICDM 2002, 1–8 (2002)Google Scholar
  70. 70.
    Leung, Y., Zhang, J., Xu, Z.: Clustering by scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1396–1410 (2000)CrossRefGoogle Scholar
  71. 71.
    Révész, P.: On a problem of Steinhaus. Acta Math. Acad. Scientiarum Hung. 16(3–4), 311–331 (1965)Google Scholar
  72. 72.
    Niknam, T., et al.: An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering. J. Zhejiang Univ. Sci. A 10(4), 512–519 (2009)Google Scholar
  73. 73.
    Niknam, T., Amiri, B.: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 10(1), 183–197 (2011)CrossRefGoogle Scholar
  74. 74.
    Ding, C., He, X.: K-means clustering via principal component analysis. Proceedings of the 21th international conference on Machine learning, pp. 29 (2004)Google Scholar
  75. 75.
    Uddin, M.F., Youssef, A.M.: Cryptanalysis of simple substitution ciphers using particle swarm optimization. IEEE Congress on Evolutionary Computation, pp. 677–680 (2006)Google Scholar
  76. 76.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)CrossRefGoogle Scholar
  77. 77.
    Danziger, M., Amaral Henriques, M.A.: Computational intelligence applied on cryptology: a brief review. Latin America Transactions IEEE (Revista IEEE America Latina) 10(3), 1798–1810 (2012)CrossRefGoogle Scholar
  78. 78.
    Chee, Y., Xu, D.: Chaotic encryption using discrete-time synchronous chaos. Phys. Lett. A 348(3–6), 284–292 (2006)CrossRefMATHGoogle Scholar
  79. 79.
    Hussein, R.M., Ahmed, H.S., El-Wahed, W.: New encryption schema based on swarm intelligence chaotic map. Proceedings of 7th International Conference on Informatics and Systems (INFOS), pp. 1–7 (2010)Google Scholar
  80. 80.
    Chen, G., Mao, Y.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solutions Fractals 21, 749–761 (2004)CrossRefMATHMathSciNetGoogle Scholar
  81. 81.
    Hongbo, Liu: Chaotic dynamic characteristics in swarm intelligence. Appl. Soft Comput. 7, 1019–1026 (2007)CrossRefGoogle Scholar
  82. 82.
    Azizipanah-Abarghooeea, R., et al.: Short-term scheduling of thermal power systems using hybrid gradient based modified teaching–learning optimizer with black hole algorithm. Electric Power Syst. Res. Elsevier 108, 16–34 (2014)Google Scholar
  83. 83.
    Bard, J.F.: Short-term scheduling of thermal-electric generators using Lagrangian relaxation. Oper. Res. 36(5), 756–766 (1988)CrossRefMATHMathSciNetGoogle Scholar
  84. 84.
    Yu, I.K., Song, Y.H.: A novel short-term generation scheduling technique of thermal units using ant colony search algorithms. Int. J. Electr. Power Energy Syst. 23, 471–479 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Santosh Kumar
    • 1
  • Deepanwita Datta
    • 1
  • Sanjay Kumar Singh
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations