Abstract
In 1906 Lyapunov [105] proved an inequality giving the distance between two consecutive zeros of solutions of second order differential equations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Bibliography
B. Aulbach and S. Hilger, Linear dynamic processes with inhomogeneous time scales, Nonlinear Dynamics and Quantum Dynamical Systems, Akademie-Verlag (Berlin) (1990).
M. Bohner, S. Clark and J. Ridenhour, Lyapunov inequalities for time scales, J. Ineq. Appl. 7 (2002), 61–77.
M. Bohner and A. Peterson. Dynamic equations on time scales. Birkhäuser Boston Inc., Boston, MA, 2001.
R. C. Brown and D. B. Hinton, Opial’s inequality and oscillation of 2nd order equations, Proc. Amer. Math. Soc. 125 (1997), 1123–1129.
B. J. Harris and Q. Kong, On the oscillation of differential equations with an oscillatory coefficient, Tran. Amer. Math. Soc. 347 (1995), 1831–1839.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge 1991).
B. Karpuz, B. Kaymakçalan and Ö. Öclan, A generalization of Opial’s inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11–18.
A. M. Lyapunov, Problème Général de la Stabilitié du mouvement, Ann. Fac. Sci Toulouse Math. 9 (1907), 203–274.
A. Peterson and J. Ridenhour, A disconjugacy criterion of W. T. Reid for difference equations. Proe. Amer. Math. Soc. 114 (1992), 459–468.
S. H. Saker, Opial’s type inequalities on time scales and some applications, Annales Polonici Mathematici 104 (2012), 243–260.
S. H. Saker, New inequalities of Opial’s type on time scales and some of their applications, Discrete Dynamics in Nature and Society 2012, art. no. 362526.
S. H. Saker, Applications of Opial inequalities on time scales on dynamic equations with damping terms, Mathl. Comp. Modelling 58 (2013) (11–12), 1777–1790
S. H. Saker, Lyapunov inequalities for half-linear dynamic equations on time scales and disconjugacy, Dyn. Contin. Discr. Impuls. Syst. Series B: Applications & Algorithms 18 (2011), 149–161.
S. H. Saker, New inequalities of Opial’s type on time scales and some of their applications, Discrete Dynamics in Nature and Society 2012, art. no. 362526.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Agarwal, R., O’Regan, D., Saker, S. (2014). Lyapunov Inequalities. In: Dynamic Inequalities On Time Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-11002-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-11002-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11001-1
Online ISBN: 978-3-319-11002-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)