Skip to main content

Lyapunov Inequalities

  • Chapter
  • First Online:
Dynamic Inequalities On Time Scales

Abstract

In 1906 Lyapunov [105] proved an inequality giving the distance between two consecutive zeros of solutions of second order differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. B. Aulbach and S. Hilger, Linear dynamic processes with inhomogeneous time scales, Nonlinear Dynamics and Quantum Dynamical Systems, Akademie-Verlag (Berlin) (1990).

    Google Scholar 

  2. M. Bohner, S. Clark and J. Ridenhour, Lyapunov inequalities for time scales, J. Ineq. Appl. 7 (2002), 61–77.

    MathSciNet  MATH  Google Scholar 

  3. M. Bohner and A. Peterson. Dynamic equations on time scales. Birkhäuser Boston Inc., Boston, MA, 2001.

    Book  MATH  Google Scholar 

  4. R. C. Brown and D. B. Hinton, Opial’s inequality and oscillation of 2nd order equations, Proc. Amer. Math. Soc. 125 (1997), 1123–1129.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. J. Harris and Q. Kong, On the oscillation of differential equations with an oscillatory coefficient, Tran. Amer. Math. Soc. 347 (1995), 1831–1839.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge 1991).

    Book  MATH  Google Scholar 

  7. B. Karpuz, B. Kaymakçalan and Ö. Öclan, A generalization of Opial’s inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11–18.

    Article  MATH  Google Scholar 

  8. A. M. Lyapunov, Problème Général de la Stabilitié du mouvement, Ann. Fac. Sci Toulouse Math. 9 (1907), 203–274.

    Article  MATH  Google Scholar 

  9. A. Peterson and J. Ridenhour, A disconjugacy criterion of W. T. Reid for difference equations. Proe. Amer. Math. Soc. 114 (1992), 459–468.

    MathSciNet  MATH  Google Scholar 

  10. S. H. Saker, Opial’s type inequalities on time scales and some applications, Annales Polonici Mathematici 104 (2012), 243–260.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. H. Saker, New inequalities of Opial’s type on time scales and some of their applications, Discrete Dynamics in Nature and Society 2012, art. no. 362526.

    Google Scholar 

  12. S. H. Saker, Applications of Opial inequalities on time scales on dynamic equations with damping terms, Mathl. Comp. Modelling 58 (2013) (11–12), 1777–1790

    Google Scholar 

  13. S. H. Saker, Lyapunov inequalities for half-linear dynamic equations on time scales and disconjugacy, Dyn. Contin. Discr. Impuls. Syst. Series B: Applications & Algorithms 18 (2011), 149–161.

    MathSciNet  MATH  Google Scholar 

  14. S. H. Saker, New inequalities of Opial’s type on time scales and some of their applications, Discrete Dynamics in Nature and Society 2012, art. no. 362526.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, R., O’Regan, D., Saker, S. (2014). Lyapunov Inequalities. In: Dynamic Inequalities On Time Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-11002-8_4

Download citation

Publish with us

Policies and ethics