We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Opial Inequalities | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Opial Inequalities

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Dynamic Inequalities On Time Scales

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 831 Accesses

Abstract

In 1960 Opial proved that if x is absolutely continuous on [a, b] with \(x(a) = x(b) = 0,\) then

$$\displaystyle{ \int _{a}^{b}\left \vert x(t)\right \vert \left \vert x^{{{\prime}} }(t)\right \vert dt \leq \frac{\left (b - a\right )} {4} \int _{a}^{b}\left \vert x^{{{\prime}} }(t)\right \vert ^{2}dt. }$$
(3.0.1)

We refer the reader to [9] for results on Opial type inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. R. P. Agarwal and P. Y. H. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Kluwer, Dordrechet (1995).

    Book  MATH  Google Scholar 

  2. N. Atasever, B. Kaymakçalan, G. Lešaja and K. Tas, Generalized diamond-α dynamic Opial inequalities, Adven. Diff. Equns. 2012, (2012), 109, 1–9.

    Google Scholar 

  3. P. R. Bessack, On an integral inequality of Z.Opial, Trans. Amer. Math. Soc. 104 (1962), 470–475.

    Google Scholar 

  4. P. R. Beesack and K. M. Das, Extensions of Opial’s inequality, Pacific J. Math 26 (1968), 215–232.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bohner, O. Duman, Opial-type inequalities for diamond-alpha derivatives and integrals on time scales, Diff. Eqns.& Dyn. Syst. 18 (2010), 229–237.

    Google Scholar 

  6. M. Bohner and B. Kaymakçalan, Opial Inequalities on time scales, Ann. Polon. Math.77 (1) (2001), 11–20.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bohner, R. R. Mahmoud and S. H. Saker, Discrete, continuous, delta, nabla and diamond-alpha Opial inequalities, Math. Ineq. Appl. (submitted).

    Google Scholar 

  8. M. Bohner and A. Peterson. Advances in dynamic equations on time scales. Birkhäauser, Boston, 2003.

    Book  MATH  Google Scholar 

  9. D. Boyd and J. S. W. Wong, An extension of Opial’s inequality, J. Math. Anal. Appl. 19 (1967), 100–102.

    Google Scholar 

  10. L. K. Hua, On an inequality of Opial, Sci. Sinica. 14 (1965), 789–790.

    MathSciNet  MATH  Google Scholar 

  11. B. Karpuz, B. Kaymakçalan and Ö. Öclan, A generalization of Opial’s inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11–18.

    Article  MATH  Google Scholar 

  12. B. Karpuz and U. M. Özkan, Some generalizations for Opial inequality involving several functions and their derivatives of arbitrary order on arbitrary time scales, Math. Ineq. Appl. (preprint).

    Google Scholar 

  13. A. A. Lasota, A discrete boundary value problem, Ann Polon. Math. 20 (1968), 183–190.

    MathSciNet  MATH  Google Scholar 

  14. P. Maroni, Sur l’ inegalité d’Opial-Beesack, C. R. Acad. Sci. Paris Ser A-B. 264 (1967), A62-A64.

    MathSciNet  Google Scholar 

  15. D. S. Mitinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalties in Analysis, Klwer Academic Publisher, 1993.

    Google Scholar 

  16. D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, New York, 1970.

    Book  MATH  Google Scholar 

  17. S. H. Saker, Opial’s type inequalities on time scales and some applications, Annales Polonici Mathematici 104 (2012), 243–260.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. H. Saker, Some new inequalities of Opial’s type on time scales, Abstract and Applied Analysis 2012, art. no. 683136.

    Google Scholar 

  19. S. H. Saker, New inequalities of Opial’s type on time scales and some of their applications, Discrete Dynamics in Nature and Society 2012, art. no. 362526.

    Google Scholar 

  20. S. H. Saker, Some Opial dynamic inequalities involving higher order derivatives on time scales, Discrete Dynamics in Nature and Society (2012), art. no. 157301.

    Google Scholar 

  21. S. H. Saker, R. P. Agarwal, D O’Regan, Higher order dynamic inequalities on time scales, Math. Ineq. Appl. 17 (2004), 461–472.

    MathSciNet  Google Scholar 

  22. H. M. Sirvastava, K. L. Tseng, S. J. Tseng and J. C. Lo, Some Weighted Opial type inequalities on time scales, Taw. J. Math. 14 (2010), 107–122.

    Google Scholar 

  23. H. M. Sirvastava, K. L. Tseng, S. J. Tseng and J. C. Lo, Some generalizations of Maroni’s inequality on time scales, Math. Ineq. Appl. 14 (2012), 469–480.

    Google Scholar 

  24. F. H. Wong, W. C. Lin, S. L. Yu and C. C. Yeh, Some generalization of Opial’s inequalities on time scales, Taw. J. Math. 12 (2008), 463–471.

    MATH  Google Scholar 

  25. G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78–83.

    Google Scholar 

  26. G. S. Yang, A note on some integrodifferential inequalities, Soochow J. Math. 9 (1983), 231–236.

    Google Scholar 

  27. Z. Zhao, Y. Xu and Y. Li, Dynamic inequalities on time scalse, Inter. J. Pure Appl. Math. 22 (2005), 49–56.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, R., O’Regan, D., Saker, S. (2014). Opial Inequalities. In: Dynamic Inequalities On Time Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-11002-8_3

Download citation

Publish with us

Policies and ethics