Abstract
In 1960 Opial proved that if x is absolutely continuous on [a, b] with \(x(a) = x(b) = 0,\) then
We refer the reader to [9] for results on Opial type inequalities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Bibliography
R. P. Agarwal and P. Y. H. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Kluwer, Dordrechet (1995).
N. Atasever, B. Kaymakçalan, G. Lešaja and K. Tas, Generalized diamond-α dynamic Opial inequalities, Adven. Diff. Equns. 2012, (2012), 109, 1–9.
P. R. Bessack, On an integral inequality of Z.Opial, Trans. Amer. Math. Soc. 104 (1962), 470–475.
P. R. Beesack and K. M. Das, Extensions of Opial’s inequality, Pacific J. Math 26 (1968), 215–232.
M. Bohner, O. Duman, Opial-type inequalities for diamond-alpha derivatives and integrals on time scales, Diff. Eqns.& Dyn. Syst. 18 (2010), 229–237.
M. Bohner and B. Kaymakçalan, Opial Inequalities on time scales, Ann. Polon. Math.77 (1) (2001), 11–20.
M. Bohner, R. R. Mahmoud and S. H. Saker, Discrete, continuous, delta, nabla and diamond-alpha Opial inequalities, Math. Ineq. Appl. (submitted).
M. Bohner and A. Peterson. Advances in dynamic equations on time scales. Birkhäauser, Boston, 2003.
D. Boyd and J. S. W. Wong, An extension of Opial’s inequality, J. Math. Anal. Appl. 19 (1967), 100–102.
L. K. Hua, On an inequality of Opial, Sci. Sinica. 14 (1965), 789–790.
B. Karpuz, B. Kaymakçalan and Ö. Öclan, A generalization of Opial’s inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11–18.
B. Karpuz and U. M. Özkan, Some generalizations for Opial inequality involving several functions and their derivatives of arbitrary order on arbitrary time scales, Math. Ineq. Appl. (preprint).
A. A. Lasota, A discrete boundary value problem, Ann Polon. Math. 20 (1968), 183–190.
P. Maroni, Sur l’ inegalité d’Opial-Beesack, C. R. Acad. Sci. Paris Ser A-B. 264 (1967), A62-A64.
D. S. Mitinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalties in Analysis, Klwer Academic Publisher, 1993.
D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, New York, 1970.
S. H. Saker, Opial’s type inequalities on time scales and some applications, Annales Polonici Mathematici 104 (2012), 243–260.
S. H. Saker, Some new inequalities of Opial’s type on time scales, Abstract and Applied Analysis 2012, art. no. 683136.
S. H. Saker, New inequalities of Opial’s type on time scales and some of their applications, Discrete Dynamics in Nature and Society 2012, art. no. 362526.
S. H. Saker, Some Opial dynamic inequalities involving higher order derivatives on time scales, Discrete Dynamics in Nature and Society (2012), art. no. 157301.
S. H. Saker, R. P. Agarwal, D O’Regan, Higher order dynamic inequalities on time scales, Math. Ineq. Appl. 17 (2004), 461–472.
H. M. Sirvastava, K. L. Tseng, S. J. Tseng and J. C. Lo, Some Weighted Opial type inequalities on time scales, Taw. J. Math. 14 (2010), 107–122.
H. M. Sirvastava, K. L. Tseng, S. J. Tseng and J. C. Lo, Some generalizations of Maroni’s inequality on time scales, Math. Ineq. Appl. 14 (2012), 469–480.
F. H. Wong, W. C. Lin, S. L. Yu and C. C. Yeh, Some generalization of Opial’s inequalities on time scales, Taw. J. Math. 12 (2008), 463–471.
G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78–83.
G. S. Yang, A note on some integrodifferential inequalities, Soochow J. Math. 9 (1983), 231–236.
Z. Zhao, Y. Xu and Y. Li, Dynamic inequalities on time scalse, Inter. J. Pure Appl. Math. 22 (2005), 49–56.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Agarwal, R., O’Regan, D., Saker, S. (2014). Opial Inequalities. In: Dynamic Inequalities On Time Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-11002-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-11002-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11001-1
Online ISBN: 978-3-319-11002-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)