Skip to main content

Application of Semiconductor Photocatalytic Materials for the Removal of Inorganic Compounds from Wastewater

  • Chapter
  • First Online:

Abstract

Semiconductor Photocatalytic Materials for the Removal…?>A wide range of inorganic pollutants are sensitive to photochemical transformation on the surface of catalysts. The major inorganic wastewater pollutants treated by this process include cyanide-containing waste and heavy metal pollutants, such as arsenic species and hexavalent chromium. Heterogeneous photocatalysis has been explored as an alternative technology for inorganic ion removal offering satisfactory results. The photocatalytic removal of inorganic pollutants usually has two types of mechanisms: oxidation and reduction.

In this chapter, the photocatalytic activities of various semiconductor materials for inorganic ion removal have been compiled and reviewed. The key advancements on the preparation of semiconductor materials tested for the removal of inorganic ions at low-level concentrations from natural water evaluating the matrix effects are also highlighted and discussed. In particular, the chapter focuses on enhancing the degradation efficiency; maximizing the use of illumination wavelength in the visible light region to develop solar active photocatalysts; the ease of separation from treated water, which is always of great interest; and improving the retrieval and reuse of semiconductors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aragay G, Pino F, Merkoci A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112(10):5317–5338. doi:10.1021/cr300020c

    Article  CAS  Google Scholar 

  • Baeissa ES, Mohamed RM (2013) Enhancement of photocatalytic properties of Ga2O3-SiO2 nanoparticles by Pt deposition. Chin J Catal 34(6):1167–1172. doi:10.1016/s1872-2067(12)60570-1

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377. doi:10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  • Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12. doi:10.1016/j.jhazmat.2012.04.054

    Article  Google Scholar 

  • Behnajady MA, Mansoriieh N, Modirshahla N, Shokri M (2012) Influence of operational parameters and kinetics analysis on the photocatalytic reduction of Cr(VI) by immobilized ZnO. Environ Technol 33(3):265–271. doi:10.1080/09593330.2011.569957

    Article  CAS  Google Scholar 

  • Chakrabarti S, Chaudhuri B, Bhattacharjee S, Ray AK, Dutta BK (2009) Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst. Chem Eng J 153(1–3):86–93. doi:10.1016/j.cej.2009.06.021

    Article  CAS  Google Scholar 

  • Choi W, Yeo J, Ryu J, Tachikawa T, Majima T (2010) Photocatalytic oxidation mechanism of As(III) on TiO2: unique role of As(III) as a charge recombinant species. Environ Sci Technol 44(23):9099–9104. doi:10.1021/es102507u

    Article  CAS  Google Scholar 

  • Delgado-Balderas R, Hinojosa-Reyes L, Guzman-Mar JL, Garza-Gonzalez MT, Lopez-Chuken UJ, Hernandez-Ramirez A (2012) Photocatalytic reduction of Cr(VI) from agricultural soil column leachates using zinc oxide under UV light irradiation. Environ Technol 33(23):2673–2680. doi:10.1080/09593330.2012.676070

    Article  CAS  Google Scholar 

  • Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29. doi:10.1016/j.jhazmat.2011.11.050

    Article  Google Scholar 

  • Farrokhi M, Yang JK, Lee SM, Shirzad-Siboni M (2013) Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles. J Environ Health Sci Eng 11(1):23. doi:10.1186/2052-336x-11-23

    Article  Google Scholar 

  • Fostier AH, Pereira MSS, Rath S, Guimarães JR (2008) Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles. Chemosphere 72(2):319–324. doi:10.1016/j.chemosphere.2008.01.067

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418. doi:10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Giannakas AE, Seristatidou E, Deligiannakis Y, Konstantinou I (2013) Photocatalytic activity of N-doped and N-F co-doped TiO2 and reduction of chromium(VI) in aqueous solution: an EPR study. Appl Catal B-Environ 132:460–468. doi:10.1016/j.apcatb.2012.12.017

    Article  Google Scholar 

  • Guo MY, Ng AMC, Liu FZ, Djurisic AB, Chan WK, Su HM, Wong KS (2011) Effect of native defects on photocatalytic properties of ZnO. J Phys Chem C 115(22):11095–11101. doi:10.1021/jp200926uv

    Article  CAS  Google Scholar 

  • Harraz FA, Abdel-Salam OE, Mostafa AA, Mohamed RM, Hanafy M (2013) Rapid synthesis of titania–silica nanoparticles photocatalyst by a modified sol–gel method for cyanide degradation and heavy metals removal. J Alloys Compd 551:1–7. doi:10.1016/j.jallcom.2012.10.004

    Article  CAS  Google Scholar 

  • Kabra K, Chaudhary R, Sawhney RL (2009) Application of solar photocatalytic treatment to industrial wastewater from a chrome plating unit. Int J Green Energy 6(1):83–91. doi:10.1080/15435070802701868

    Article  CAS  Google Scholar 

  • Karunakaran C, Gomathisankar P (2013) Solvothermal synthesis of CeO2-TiO2 nanocomposite for visible light photocatalytic detoxification of cyanide. ACS Sustain Chem Eng 130917082519009. doi: 10.1021/sc400195n

  • Karunakaran C, Gomathisankar P, Manikandan G (2010) Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Mater Chem Phys 123(2–3):585–594. doi:10.1016/j.matchemphys.2010.05.019

    Article  CAS  Google Scholar 

  • Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V (2011a) Preparation and characterization of ZnO-TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Mater Res Bull 46(10):1586–1592. doi:10.1016/j.materresbull.2011.06.019

    Article  CAS  Google Scholar 

  • Karunakaran C, Gomathisankar P, Manikandan G (2011b) Solar photocatalytic detoxification of cyanide by different forms of TiO2. Korean J Chem Eng 28(5):1214–1220. doi:10.1007/s11814-010-0503-1

    Article  CAS  Google Scholar 

  • Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible Light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241. doi:10.1021/jp204364a

    Article  CAS  Google Scholar 

  • Kuyucak N, Akcil A (2013) Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 50–51:13–29. doi:10.1016/j.mineng.2013.05.027

    Article  Google Scholar 

  • Li Q, Easter NJ, Shang JK (2009) As(III) removal by palladium-modified nitrogen-doped titanium oxide nanoparticle photocatalyst. Environ Sci Technol 43(5):1534–1539. doi:10.1021/es8025837

    Article  CAS  Google Scholar 

  • Litter MI (2009) Treatment of chromium, mercury, lead, uranium, and arsenic in water by heterogeneous photocatalysis. 36. doi: 10.1016/s0065-2377(09)00402-5

  • Liu X, Lv T, Pan L, Sun Z, Sun CQ (2012a) Microwave-assisted synthesis of ZnO for photocatalytic reduction of Cr(VI) in aqueous solution. Desalin Water Treat 42(1–3):216–221. doi:10.5004/dwt.2012.2825

    Article  CAS  Google Scholar 

  • Liu X, Pan L, Zhao Q, Lv T, Zhu G, Chen T, Lu T, Sun Z, Sun C (2012b) UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng J 183:238–243. doi:10.1016/j.cej.2011.12.068

    Article  CAS  Google Scholar 

  • Liu X, Lv T, Liu Y, Pan L, Sun Z (2013a) TiO2-Au composite for efficient UV photocatalytic reduction of Cr(VI). Desalin Water Treat 51(19–21):3889–3895. doi:10.1080/19443994.2013.781739

    Article  CAS  Google Scholar 

  • Liu X, Pan L, Lv T, Sun Z (2013b) Investigation of photocatalytic activities over ZnO-TiO2-reduced graphene oxide composites synthesized via microwave-assisted reaction. J Colloid Interface Sci 394:441–444. doi:10.1016/j.jcis.2012.11.047

    Article  CAS  Google Scholar 

  • López-Muñoz M-J, Aguado J, van Grieken R, Marugán J (2009) Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions. Appl Catal B Environ 86(1–2):53–62. doi:10.1016/j.apcatb.2008.07.022

    Article  Google Scholar 

  • Marugan J, van Grieken R, Cassano AE, Alfano OM (2008) Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions. Appl Catal B-Environ 85(1–2):48–60. doi:10.1016/j.apcatb.2008.06.026

    Article  CAS  Google Scholar 

  • Meichtry JM, Rivera V, Di Iorio Y, Rodriguez HB, San Roman E, Grela MA, Litter MI (2009) Photoreduction of Cr(VI) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2. Photochem Photobiol Sci 8(5):604–612. doi:10.1039/b816441j

    Article  CAS  Google Scholar 

  • Mohamed RM, Baeissa ES (2013) Preparation and characterisation of Pd–TiO2–hydroxyapatite nanoparticles for the photocatalytic degradation of cyanide under visible light. Appl Catal A Gen 464–465:218–224. doi:10.1016/j.apcata.2013.05.043

    Article  Google Scholar 

  • Mukherjee K, Saha R, Ghosh A, Saha B (2012) Chromium removal technologies. Res Chem Intermed 39(6):2267–2286. doi:10.1007/s11164-012-0779-3

    Article  Google Scholar 

  • Osathaphan K, Chucherdwatanasak B, Rachdawong P, Sharma VK (2008) Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: effect of ethylenediaminetetraacetate. Sol Energy 82(11):1031–1036. doi:10.1016/j.solener.2008.04.007

    Article  CAS  Google Scholar 

  • Osathaphan K, Ruengruehan K, Yngard RA, Sharma VK (2013) Photocatalytic Degradation of Ni(II)-Cyano and Co(III)-Cyano Complexes. Water Air Soil Pollution 224 (8). doi:1647 10.1007/s11270-013-1647-5

  • Pifferi V, Spadavecchia F, Cappelletti G, Paoli EA, Bianchi CL, Falciola L (2013) Electrodeposited nano-titania films for photocatalytic Cr(VI) reduction. Catal Today 209:8–12. doi:10.1016/j.cattod.2012.08.031

    Article  CAS  Google Scholar 

  • Pineda Arellano CA, Silva Martinez S (2010) Effects of pH on the degradation of aqueous ferricyanide by photolysis and photocatalysis under solar radiation. Sol Energy Mater Sol Cells 94(2):327–332. doi:10.1016/j.solmat.2009.10.008

    Article  CAS  Google Scholar 

  • Qamar M, Gondal MA, Yamani ZH (2011) Laser-induced efficient reduction of Cr(VI) catalyzed by ZnO nanoparticles. J Hazard Mater 187(1–3):258–263. doi:10.1016/j.jhazmat.2011.01.007

    Article  CAS  Google Scholar 

  • Qiu R, Zhang D, Diao Z, Huang X, He C, Morel J-L, Xiong Y (2012) Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation. Water Res 46(7):2299–2306. doi:10.1016/j.watres.2012.01.046

  • Rivera-Reyna N, Hinojosa-Reyes L, Guzmán-Mar JL, Cai Y, O’Shea K, Hernández-Ramírez A (2013) Photocatalytical removal of inorganic and organic arsenic species from aqueous solution using zinc oxide semiconductor. Photochem Photobiol Sci 12(4):653. doi:10.1039/c2pp25231g

    Article  CAS  Google Scholar 

  • Saleh TA, Gondal MA, Drmosh QA (2010) Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnology 21(49):495705. doi:10.1088/0957-4484/21/49/495705

    Article  Google Scholar 

  • Salinas-Guzmán RR, Guzmán-Mar JL, Hinojosa-Reyes L, Peralta-Hernández JM, Hernández-Ramírez A (2010) Enhancement of cyanide photocatalytic degradation using sol–gel ZnO sensitized with cobalt phthalocyanine. J Sol-Gel Sci Technol 54(1):1–7. doi:10.1007/s10971-009-2145-5

    Article  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759. doi:10.1016/j.envint.2009.01.005

    Article  CAS  Google Scholar 

  • Siboni MS, Samadi MT, Yang JK, Lee SM (2011a) Photocatalytic reduction of Cr(VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study. Environ Technol 32(14):1573–1579. doi:10.1080/09593330.2010.543933

    Article  Google Scholar 

  • Siboni MS, Samarghandi MR, Yang JK, Lee SM (2011b) Photocatalytic removal of cyanide with illuminated TiO2. Water Sci Technol 64(7):1383. doi:10.2166/wst.2011.738

    Article  CAS  Google Scholar 

  • Tian Q, Zhuang J, Wang J, Xie L, Liu P (2012) Novel photocatalyst, Bi2Sn2O7, for photooxidation of As(III) under visible-light irradiation. Appl Catal A Gen 425–426:74–78. doi:10.1016/j.apcata.2012.03.005

    Article  Google Scholar 

  • Tsimas ES, Tyrovola K, Xekoukoulotakis NP, Nikolaidis NP, Diamadopoulos E, Mantzavinos D (2009) Simultaneous photocatalytic oxidation of As(III) and humic acid in aqueous TiO2 suspensions. J Hazard Mater 169(1–3):376–385. doi:10.1016/j.jhazmat.2009.03.107

    Article  CAS  Google Scholar 

  • Vignesh K, Priyanka R, Rajarajan M, Suganthi A (2013) Photoreduction of Cr(VI) in water using Bi2O3-ZrO2 nanocomposite under visible light irradiation. Mat Sci Eng B-Adv Functional Solid-State Mat 178(2):149–157. doi:10.1016/j.mseb.2012.10.035

    Article  CAS  Google Scholar 

  • Waldmann NS, Paz Y (2010) Photocatalytic reduction of Cr(VI) by titanium dioxide coupled to functionalized CNTs: an example of counterproductive charge separation. J Phys Chem C 114(44):18946–18952. doi:10.1021/jp105925g

    Article  Google Scholar 

  • Wang L, Wang N, Zhu L, Yu H, Tang H (2008) Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J Hazard Mater 152(1):93–99. doi:10.1016/j.jhazmat.2007.06.063

    Article  CAS  Google Scholar 

  • Wang N, Zhu L, Deng K, She Y, Yu Y, Tang H (2010) Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Appl Catal B-Environ 95(3–4):400–407. doi:10.1016/j.apcatb.2010.01.019

    Article  CAS  Google Scholar 

  • Xu Z, Long Y, Kang S-Z, Mu J (2008) Application of the composite of TiO2 nanoparticles and carbon nanotubes to the photo-reduction of Cr(VI) in water. J Dispers Sci Technol 29(8):1150–1152. doi:10.1080/01932690701817982

    Article  CAS  Google Scholar 

  • Xu S, Zhang Y, Wang S, Xu J, Ding H, Li G (2013) Structure-enhanced photocatalytic removal of Cr(VI) by a TiO2 superstructure with ultrathin rutile nanorods and abundant {110} faces. Eur J Inorg Chem 14:2601–2607. doi:10.1002/ejic.201201475

    Article  Google Scholar 

  • Yang L, Xiao Y, Liu S, Li Y, Cai Q, Luo S, Zeng G (2010) Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid. Appl Catal B-Environ 94(1–2):142–149. doi:10.1016/j.apcatb.2009.11.002

    Article  CAS  Google Scholar 

  • Yang Q-L, Kang S-Z, Chen H, Bu W, Mu J (2011) La2Ti2O7: An efficient and stable photocatalyst for the photoreduction of Cr(VI) ions in water. Desalination 266(1–3):149–153. doi:10.1016/j.desal.2010.08.018

    Article  CAS  Google Scholar 

  • Yang JK, Lee SM, Farrokhi M, Giahi O, Siboni MS (2012a) Photocatalytic removal of Cr(VI) with illuminated TiO2. Desalin Water Treat 46(1–3):375–380. doi:10.1080/19443994.2012.677564

    Article  CAS  Google Scholar 

  • Yang JK, Lee SM, Siboni MS (2012b) Effect of different types of organic compounds on the photocatalytic reduction of Cr(VI). Environ Technol 33(17):2027–2032. doi:10.1080/09593330.2012.655325

    Article  CAS  Google Scholar 

  • Yang J, Dai J, Li J (2013) Visible-light-induced photocatalytic reduction of Cr(VI) with coupled Bi2O3/TiO2 photocatalyst and the synergistic bisphenol A oxidation. Environ Sci Pollut Res 20(4):2435–2447. doi:10.1007/s11356-012-1131-6

    Article  CAS  Google Scholar 

  • Yao S, Jia Y, Shi Z, Zhao S (2010) Photocatalytic oxidation of arsenite by a composite of titanium dioxide and activated carbon fiber. Photochem Photobiol 86(6):1215–1221. doi:10.1111/j.1751-1097.2010.00813.x

    Article  CAS  Google Scholar 

  • Yao SH, Jia YF, Zhao SL (2012) Photocatalytic oxidation and removal of arsenite by titanium dioxide supported on granular activated carbon. Environ Technol 33(9):983–988. doi:10.1080/09593330.2011.604857

    Article  CAS  Google Scholar 

  • Zhang YC, Li J, Xu HY (2012) One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Appl Catal B-Environ 123:18–26. doi:10.1016/j.apcatb.2012.04.018

    Article  Google Scholar 

  • Zheng S, Cai Y, O’Shea KE (2010) TiO2 photocatalytic degradation of phenylarsonic acid. J Photochem Photobiol A Chem 210(1):61–68. doi:10.1016/j.jphotochem.2009.12.004

    Article  CAS  Google Scholar 

  • Zhou W, Fu H, Pan K, Tian C, Qu Y, Lu P, Sun C-C (2008) Mesoporous TiO2/α-Fe2O3: bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption. J Phys Chem C 112(49):19584–19589. doi:10.1021/jp806594m

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Hinojosa-Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guzmán-Mar, J.L., Villanueva-Rodríguez, M., Hinojosa-Reyes, L. (2015). Application of Semiconductor Photocatalytic Materials for the Removal of Inorganic Compounds from Wastewater. In: Hernández-Ramírez, A., Medina-Ramírez, I. (eds) Photocatalytic Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-319-10999-2_7

Download citation

Publish with us

Policies and ethics