The Positioning of Systems Powered by McKibben Type Muscles

  • Wiktor Parandyk
  • Michał Ludwicki
  • Bartłomiej Zagrodny
  • Jan Awrejcewicz
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 317)

Abstract

In this paper a continuous control of the mechanical system positioning, powered by a pneumatic actuators (McKibben type muscles) is presented. The control system consists of appropriate sensors which allows to monitor the values of the characteristic parameters, i.e. displacement and pressure. Moreover, throttle valve controlled by stepper motor is used as regulated elements. Measured signals (displacement of the actuator and the load, calculated indirectly) provide feedback loop to the control system which operate the throttle valves. Proposed system, build of one valve (actuated by stepper motor), McKibben muscle, air compressor and electronic compartments allows for continuous control of the air flow, variable speed of shortening or stretching of artificial muscle and its smooth stop at the desired (set) position. Data acquisition system, used for measuring the characteristic parameters and for valve operation support is realized by an universal measurement and control multimodule in addition to the LabVIEW software package.

Keywords

muscle McKibben type positioning continuous control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dindorf, R.: The modeling of the pneumatic, artificial muscle systems, Department of Mechatronics, pp. 147–156. Kielce University of Technology, Kielce (2005) (in Polish, Modelowanie sztucznych układów mięśniowych aktuatorami pneumatycznymi)Google Scholar
  2. 2.
    Daerden, F., Lefeber, D.: Pneumatic Artificial Muscles: actuators for robotics and automation, Vrije Universiteit Brussel, Department of Mechanical Engineering, BrusselsGoogle Scholar
  3. 3.
    Kawashima, K., Sasaki, T., Ohkubo, A., Miyata, T., Kagawa, T.: Application of Robot Arm Using Fiber Knitted Type Pneumatic Artificial Rubber Muscles, pp. 4937–4942. Tokyo Institute of Technology, Yokohama (2004), doi:10.1109/ROBOT.2004.1302500Google Scholar
  4. 4.
    Tondu, B., Ippolito, S., Guiochet, J.: A Seven-degrees-of-freedom Robot-arm Driven by Pneumatic Artificial Muscles for Humanoid Robots, pp. 257–274. Institut National de Sciences Appliquées, Touluse (2005), doi:10.1177/0278364905052437Google Scholar
  5. 5.
    Chou, C.-P., Hannaford, B.: Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles, Department of Electrical Engineering, pp. 281–284. University of Washington, Seattle (1994), doi:10.1109/ROBOT.1994.350977Google Scholar
  6. 6.
    Li, Y., Heong Ang, K., Chong, G.C.Y.: PID control system analysis and design. IEEE Control Systems 26(1), 32–41 (2006), doi:10.1109/MCS.2006.1580152CrossRefGoogle Scholar
  7. 7.
    Ko, B.-S., Edgar, T.F.: PID control performance assessment: The single loop case. AIChE Journal 50(6), 1211–1218 (2004)CrossRefGoogle Scholar
  8. 8.
    Parandyk, W., Zagrodny, B., Awrejcewicz, J.: Selected problems of biocompatibility of the pneumatically controlled arm. Pomiary Automatyka Robotyka 17(1), 71–75 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wiktor Parandyk
    • 1
  • Michał Ludwicki
    • 1
  • Bartłomiej Zagrodny
    • 1
  • Jan Awrejcewicz
    • 1
  1. 1.Department of Automation, Biomechanics and MechatronicsLodz University of TechnologyLodzPoland

Personalised recommendations