Skip to main content

Filtration of Airwave in Seabed Logging Using Principal Component Analysis

  • 713 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 414)


In this research, Independent component analysis using Principal Component Analysis (ICA-PCA) technique has been applied in the field of seabed logging application for the filtration of airwaves. Independent component analysis (ICA) is a statistical approach for transforming data of multivariate nature into its constituent components (sources) which are considered to be statistically independent of each other. ICA-PCA is applied in the domain of marine controlled source electromagnetic (CSEM), called seabed logging (SBL) sensing method used for the detection of hydrocarbons based reservoirs in SBL application. ICA-PCA has not been applied before in SBL application, and therefore may reduce exploration costs in deep sea areas. The task is to identify the air waves and to filter them out, hence, the ICA-PCA algorithm is carried out for airwave filtration, at varying seawater depth from 100 m to 3000 m. It is observed that the results are favorable upto 2500 m depth. Upon increasing seawater depth, the component representing the presence of hydrocarbon becomes more dispersed, vague and indistinguishable.


  • Principal Component Analysis
  • Seabed logging
  • Independent component analysis
  • ICA
  • PCA
  • Data mining

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10987-9_6
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-10987-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. Lee, T.: Independent Component Analysis – Theory and Applications. Kluwer Academic Publishers, Hingham (2001). ISBN 0-7923-8261-7

    Google Scholar 

  2. Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13, 411–430 (2000)

    CrossRef  Google Scholar 

  3. Andreis, D., MacGregor, L.: Controlled-source electromagnetic sounding in shallow water: principles and applications. Geophy. J. 73, 21–32 (2008)

    CrossRef  Google Scholar 

  4. Amari, S., Cichocki, A.: Adaptive blind signal separation: neural network approaches. Proc. IEEE 86(10), 2026–2048 (1998)

    CrossRef  Google Scholar 

  5. Cardoso, J.F.: Blind signal separation: statistical principles. Proc. IEEE 86(10), 2009–2047 (1998)

    CrossRef  Google Scholar 

  6. Xi, J., Chicharo, J.F., Tsoi, A.C., Siu, W.C.: On the INFOMAX algorithm for blind signal separation. In: 5th International Conference on Signal Processing Proceedings, WCCC-ICSP 2000, vol. 1, pp. 425–428 (2000)

    Google Scholar 

  7. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)

    CrossRef  Google Scholar 

  8. Bell, A., Sejnowski, T.: Fast blind separation based on information theory. Neural Comput. 7, 1129–1159 (1995)

    CrossRef  Google Scholar 

  9. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience Publication, New York (2001). ISBN 0 471 40540-X

    CrossRef  Google Scholar 

  10. Nordskag, J.I., Amundsen, L.: Asymptotic airwave modeling for marine con-trolled-source electromagnetic surveying. Geophysics 72(6), F249–F255 (2007)

    CrossRef  Google Scholar 

  11. Shaw, A., Al-Shamma’a, A.I., Wylie, S.R., Toal, D.: Experimental investigations of electromagnetic wave propagation in seawater. In: Proceedings of the 36th European Microwave Conference, Manchester, UK (2006)

    Google Scholar 

  12. Røsten, T., Amundsen, L.: Generalized electromagnetic seabed logging wavefield de-composition into U/D-going components, 2006 Society of Exploration Geophysicists, SEG Expanded Abstracts, 23, 592 (2004)

    Google Scholar 

  13. Løseth, L.O., Amundsen, L., Jenssen, A.: A solution to the airwave-removal problem in shallow-water marine EM. Geophysics 75(5), A37–A42 (2010)

    CrossRef  Google Scholar 

  14. Izenman, A.J.: What is Independent Component Analysis?. Temple University, Philadelphia (2003)

    Google Scholar 

  15. Zeman, T.: BSS - Preprocessing Steps for Separation Improvement. CTU FEE, Department of Circuit Theory (2000)

    Google Scholar 

  16. Biran, A., Breiner, M.: MATLAB For Engineers. Addison-Wesley Publishers Ltd, Reading (1995). ISBN 0-201-56524-2

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Adeel Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ansari, A., Shafie, A.B., Ansari, S., Said, A.B.M., Nyamasvisva, E.T. (2014). Filtration of Airwave in Seabed Logging Using Principal Component Analysis. In: Shaikh, F., Chowdhry, B., Zeadally, S., Hussain, D., Memon, A., Uqaili, M. (eds) Communication Technologies, Information Security and Sustainable Development. IMTIC 2013. Communications in Computer and Information Science, vol 414. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10986-2

  • Online ISBN: 978-3-319-10987-9

  • eBook Packages: Computer ScienceComputer Science (R0)