Tracking of EEG Activity Using Motion Estimation to Understand Brain Wiring

  • Humaira Nisar
  • Aamir Saeed Malik
  • Rafi Ullah
  • Seong-O Shim
  • Abdullah Bawakid
  • Muhammad Burhan Khan
  • Ahmad Rauf Subhani
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 823)

Abstract

The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.

Keywords

Brain activation EEG Topomaps Motion estimation Full search 

Notes

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. 968-009-D1434. The authors, therefore, acknowledge with thanks DSR technical and financial support.

References

  1. 1.
    V.P.C. Babiloni, C.D. Gratta, A. Ferretti, G.L. Romani, Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging. Int. Rev. Neurobiol. 86, 67–80 (2009)CrossRefGoogle Scholar
  2. 2.
    K.S. Bhushan, Motion based foreground segmentation using block matching algorithm. Int. J. Recent Trends Eng. 1, 158–160 (2009)Google Scholar
  3. 3.
    T.F. Collura, Applications of small brainwave machines, in Proceedings of Annual Conference on Brain Modification and EEG, Palm Springs, Feb 1997Google Scholar
  4. 4.
    M. Djalalov, H. Nisar, Y. Salih, A.S. Malik, An algorithm for vehicle tracking and detection, in Proceedings of International Conference on Intelligent and Advanced Systems, Kuala Lumpur, 2010Google Scholar
  5. 5.
    J. Jain, Displacement measurement and its application in interframe image coding. IEEE Trans. Commun. 29, 1799–1808 (1981)CrossRefGoogle Scholar
  6. 6.
    T. Koga, K. Iinuma, A. Hirano, Y. Iijima, T. Ishiguro, Motion compensated interframe coding for video conferencing, in Proceedings of NTC81, New Orleans, 1981Google Scholar
  7. 7.
    W.T. Lee, H. Nisar, A.S. Malik, K.H. Yeap, A brain computer interface for smart home control, in Proceedings of IEEE International Symposium on Consumer Electronics, Hsinchu, 3–6 June 2013, pp. 35–36Google Scholar
  8. 8.
    R. Li, B. Zeng, M.L. Liou, A new three-step search algorithm for block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 4, 438–442 (1994)CrossRefGoogle Scholar
  9. 9.
    X. Marichal, Motion estimation and compensation for very low bitrate video coding, PhD thesis, Laboratoire de Telecommunication et Teledetection, Université Catholique de Louvain, 1998Google Scholar
  10. 10.
    M.R. Nuwer, Quantitative EEG: I. Techniques and problems of frequency analysis and topographic mapping. J. Clin. Neurophysiol. 5(1), 1–44, (1988)Google Scholar
  11. 11.
    A. Netravali, J. Robbins Motion-compensated television coding: part I. Bell Syst. Tech. J. 58, 631–670 (1979)Google Scholar
  12. 12.
    H. Nisar, T.S. Choi, An advanced center biased search algorithm for motion estimation, in International Conference on Image Processing, Vancouver, vol. 1, 2000, pp. 832–835Google Scholar
  13. 13.
    H. Nisar, T.S. Choi, Fast motion estimation algorithm based on spatio-temporal correlation and direction of motion vectors. Electron. Lett. 42, 1384–1385 (2006)CrossRefGoogle Scholar
  14. 14.
    H. Nisar, T.S. Choi, Multiple initial point prediction based search pattern selection for fast motion estimation. Pattern Recognit. 42, 475–486 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    H. Nisar, A.S. Malik, T.S. Choi, Content adaptive fast motion estimation based on spatio-temporal homogeneity analysis and motion classification. Pattern Recognit. Lett. 33, 52–61 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Nisar, H.C. Balasubramaniam, A.S. Malik, Brain computer interface for operating a robot, in Proceedings of International Symposium on Computational Models for Life Sciences, Sydney. AIP conference proceedings, vol. 1559 (2013)Google Scholar
  17. 17.
    C.M. Pechura, J.B. Martin, Mapping the Brain and Its Functions: Integrating Enabling Technologies into Neuroscience Research. (The National Academies Press, Washington, D.C., 1991)Google Scholar
  18. 18.
    L.M. Po, W.C. Ma, A novel four-step search algorithm for fast block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 6, 313–317 (1996)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    S. Zhu, K.K. Ma, A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. Image Process. 9, 287–290 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Humaira Nisar
    • 1
  • Aamir Saeed Malik
    • 2
  • Rafi Ullah
    • 3
  • Seong-O Shim
    • 4
  • Abdullah Bawakid
    • 4
  • Muhammad Burhan Khan
    • 1
  • Ahmad Rauf Subhani
    • 2
  1. 1.Faculty of Engineering and Green Technology, Department of Electronic EngineeringUniversiti Tunku Abdul RahmanPerakMalaysia
  2. 2.Department of Electrical and Electronic Engineering, Centre for Intelligent Signal and Imaging ResearchUniversiti Teknologi PETRONASPerakMalaysia
  3. 3.Comsats Institute of Information TechnologyIslamabadPakistan
  4. 4.Faculty of Computing and Information TechnologyKing Abdul Aziz UniversityKingdom of Saudi ArabiaJeddah

Personalised recommendations