Modeling of Testosterone Regulation by Pulse-Modulated Feedback

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 823)

Abstract

The continuous part of a hybrid (pulse-modulated) model of testosterone (Te) feedback regulation in the human male is extended with infinite-dimensional and nonlinear blocks, to obtain the dynamics that better agree with the hormone concentration profiles observed in clinical data. A linear least-squares based optimization algorithm is developed for the purpose of detecting impulses of gonadotropin-releasing hormone (GnRH) from measured concentration of luteinizing hormone (LH). The estimated impulse parameters are instrumental in evaluating the frequency and amplitude modulation functions parameterizing the pulse-modulated feedback. The proposed approach allows for the identification of all model parameters from the hormone concentrations of Te and LH. Simulation results of the complete estimated closed-loop system exhibiting similar to the clinical data behavior are provided.

Keywords

Endocrine systems Modeling Impulse detection Pulsatile feedback Testosterone regulation Time delay Impulsive systems 

Notes

Acknowledgements

This work was in part financed by the European Research Council, Advanced Grant 247035 (SysTEAM) and Grant 2012-3153 from the Swedish Research Council.

References

  1. 1.
    R.H. Abraham, H. Kocak, W.R. Smith, Chaos and intermittency in an endocrine system model, in Chaos, Fractals, and Dynamics, ed. by P. Fischer, W.R. Smith, vol. 98 (Marcel Dekker, New York, 1985), pp. 33–70Google Scholar
  2. 2.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, 2004)CrossRefMATHGoogle Scholar
  3. 3.
    M. Cartwright, M. Husain, A model for the control of testosterone secretion. J. Theor. Biol. 123(2), 239–250 (1986)CrossRefGoogle Scholar
  4. 4.
    F. Chang, R. Luus, A noniterative method for identification using Hammerstein model. IEEE Trans. Autom. Contr. 16(5), 464–468 (1971)CrossRefGoogle Scholar
  5. 5.
    A. Churilov, A. Medvedev, P. Mattsson, Analysis of a pulse-modulated model of endocrine regulation with time-delay, in IEEE 51st Annual Conference on Decision and Control (CDC), Maui (2012), pp. 362–367Google Scholar
  6. 6.
    A. Churilov, A. Medvedev, P. Mattsson, On finite-dimensional reducibility of time-delay systems under pulse-modulated feedback, in IEEE 52nd Annual Conference on Decision and Control (CDC), Firenze (2013), pp. 362–367Google Scholar
  7. 7.
    A. Churilov, A. Medvedev, A. Shepeljavyi, Mathematical model of non-basal testosterone regulation in the male by pulse modulated feedback. Automatica 45(1), 78–85 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    F. Clément, J.-P. Françoise, Mathematical modeling of the GnRH-pulse and surge generator. SIAM J. Appl. Dyn. Syst. 6(2), 441–456 (2007)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    D.J. Dierschke, A.N. Bhattacharya, L.E. Atkinson, E. Knobil, Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology 87, 850–853 (1970)CrossRefGoogle Scholar
  10. 10.
    F. Ding, X.P. Liu, G. Liu, Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Efimov, A. Fradkov, Oscillatority conditions for nonlinear systems with delay. J. Appl. Math. (2007). article ID 72561Google Scholar
  12. 12.
    G. Enciso, E.D. Sontag, On the stability of a model of testosterone dynamics. J. Math. Biol. 49, 627–634 (2004)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    L.S. Farhy, Modeling of oscillations in endocrine networks with feedback, in Numerical Computer Methods, Part E, ed. by M.L. Johnson, L. Brand. Methods in Enzymology, vol. 384 (Academic, San Diego,2004), pp. 54–81Google Scholar
  14. 14.
    T. Glad, L. Ljung, Control Theory: Multivariable and Nonlinear Methods (Taylor and Francis, New York/London, 2000)Google Scholar
  15. 15.
    W.J. Heuett, H. Qian, A stochastic model of oscillatory blood testosterone levels. Bull. Math. Biol. 68(6), 1383–1399 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    E. Hidayat, A. Medvedev, Identification of a pulsatile endocrine model from hormone concentration data, in IEEE International Conference on Control Applications (CCA), Dubrovnik (2012), pp. 356–363Google Scholar
  17. 17.
    E. Hidayat, A. Medvedev, Laguerre domain identification of continuous linear time-delay systems from impulse response data. Automatica 48(11), 2902–2907 (2012)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    M.L. Johnson, L. Pipes, P.P. Veldhuis, L.S. Farhy, R. Nass, M.O. Thorner, W.S. Evans, AutoDecon: a robust numerical method for the quantification of pulsatile events, in Computer Methods, Volume A, ed. by M.L. Johnson, L. Brand. Methods in Enzymology, vol. 454 (Elsevier, Amsterdam, 2009), pp. 367–404Google Scholar
  19. 19.
    D.M. Keenan, J.D. Veldhuis, A biomathematical model of time-delayed feedback in the human male hypothalamic-pituitary-leydig cell axis. Am. J. Physiol. Endocrinol. Metab. 275(1), E157–E176 (1998)Google Scholar
  20. 20.
    D.M. Keenan, S. Chattopadhyay, J.D. Veldhuis, Composite model of time-varying appearance and disappearance of neurohormone pulse signals in blood. J. Theor. Biol. 236(3), 242–255 (2005)CrossRefMathSciNetGoogle Scholar
  21. 21.
    D.M. Keenan, I. Clarke, J.D. Veldhuis, Non-invasive analytical estimation of endogenous gonadotropin-releasing hormone (GnRH) drive: analysis using graded competitive GnRH-receptor antagonism and a calibrating pulse of exogenous GnRH. Endocrinology 152(12), 4882–4893 (2011)CrossRefGoogle Scholar
  22. 22.
    D.M. Keenan, W. Sun, J.D. Veldhuis, A stochastic biomathematical model of male reproductive hormone systems. SIAM J. Appl. Math. 61(3), 934–965 (2000)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    B.P. Kovatchev, M. Breton, C. Dalla Man, C. Cobelli, In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 3(1), 44–55 (2009)CrossRefGoogle Scholar
  24. 24.
    P. Mattsson, A. Medvedev, Estimation of input impulses by means of continuous finite memory observers, in American Control Conference, Montreal, June 2012, pp. 6769–6774Google Scholar
  25. 25.
    P. Mattsson, A. Medvedev, Modeling of testosterone regulation by pulse-modulated feedback: an experimental data study, in International Symposium on Computational Models for Life Sciences, ed. by C. Sun, T. Bednarz, T.D. Pham, P. Vallotton, D. Wang. AIP Conference Proceedings, Sydney, vol. 1559 (2013), pp. 333–342Google Scholar
  26. 26.
    A. Medvedev, A. Churilov, P. Mattsson, Periodical solutions in a pulse-modulated model of endocrine regulation with time-delay. IEEE Trans. Autom. Contr. 59(3), 728–733 (2014)CrossRefMathSciNetGoogle Scholar
  27. 27.
    J.D. Murray, Mathematical Biology, I: An Introduction, 3rd edn. (Springer, New York, 2002)Google Scholar
  28. 28.
    N.L. Rasgon, L. Pumphrey, P. Prolo, S. Elman, A.B. Negrao, J. Licinio, A. Garfinkel, Emergent oscillations in mathematical model of the human menstrual cycle. CNS Spectr. 8(11), 805–814 (2003)Google Scholar
  29. 29.
    W.R. Smith, Hypothalamic regulation of pituitary secretion of luteinizing hormone. II. Feedback control of gonadotropin secretion. Bull. Math. Biol. 42(1), 57–78 (1980)MATHGoogle Scholar
  30. 30.
    T. Söderström, P. Stoica, System Identification (Prentice-Hall, Upper Saddle River, 1988)Google Scholar
  31. 31.
    C.T. Sparrow, Chaos in a three-dimensional single loop feedback system with a piecewise linear feedback function. J. Math. Anal. Appl. 83(1), 275–291 (1981)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    R. Tibshirani, Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)Google Scholar
  33. 33.
    J.D. Veldhuis, Recent insights into neuroendocrine mechanisms of aging of the human male hypothalamic-pituitary-gonadal axis. J. Androl. 20(1), 1–18 (1999)Google Scholar
  34. 34.
    J.D. Veldhuis, J.C. King, R.J. Urban, A.D. Rogol, W.S. Evans, L.A. Kolp, M.L. Johnson, Operating characteristics of the male hypothalamo-pituitary-gonadal axis: pulsatile release of testosterone and follicle-stimulating hormone and their temporal coupling with luteinizing hormone. J. Clin. Endocrinol. Metab. 65(5), 929–41 (1987)CrossRefGoogle Scholar
  35. 35.
    J.J. Walker, J.R. Terry, K. Tsaneva-Atanasova, S.P. Armstrong, C.A. McArdle, S.L. Lightman, Encoding and decoding mechanisms of pulsatile hormone secretion. J. Neuroendocr. 22, 1226–1238 (2009)CrossRefGoogle Scholar
  36. 36.
    Z.T. Zhusubaliyev, A.N. Churilov, A. Medvedev, Bifurcation phenomena in an impulsive model of non-basal testosterone regulation. Chaos Interdiscip. J. Nonlinear Sci. 22(1), 013121 (2012)Google Scholar
  37. 37.
    M. Zitzmann, E. Nieschlag, Testosterone levels in healthy men and the relation to behavioural and physical characteristics: facts and constructs. Eur. J. Endocr. 144(3), 183–197 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations