Towards Automated Quantitative Vasculature Understanding via Ultra High-Resolution Imagery

  • Rongxin Li
  • Dadong Wang
  • Changming Sun
  • Ryan Lagerstrom
  • Hai Tan
  • You He
  • Tiqiao Xiao
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 823)

Abstract

This chapter presents an approach to processing ultra high-resolution, large-size biomedical imaging data for the purposes of detecting and quantifying vasculature and microvasculature. Capturing early signs of any changes in vasculature may have significant values for early-diagnosis and treatment assessment due to the well understood observation that vascular changes precede cancerous growth and metastasis. With the advent of key enabling technologies for extremely high-resolution imaging, such as synchrotron radiation based computed tomography (CT), the required levels of detail have become accessible. However, these technologies also present challenges in data analysis. This chapter aims to offer some insights as to how these changes might be best dealt with. We argue that the necessary steps in quantitative understanding of vasculatures include targeted data enhancement, information reduction aimed at characterizing the linear structure of vessels, and quantitatively describing the vessel hierarchy. We present results on cerebral and liver vasculatures of a mouse captured at the Shanghai Synchrotron Radiation Facility (SSRF). These results were achieved with a processing pipeline comprising of our empirically selected component for each of the above steps. Towards the end, we discuss how alternative and additional components may be incorporated for improved speed and robustness.

Keywords

Angiogenesis and neovascularization Vasculature quantification Vessel skeletonization Synchrotron imagery Vascular hierarchy 

References

  1. 1.
    D. Adalsteinsson, J.A. Sethian, A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    C. Arcelli, G.S. di Baja, L. Serino, Distance-driven skeletonization in voxel images. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 709–720 (2011)CrossRefGoogle Scholar
  3. 3.
    H. Blum, Biological shape and visual science (part I). J. Theor. Biol. 38, 205–287 (1973)CrossRefGoogle Scholar
  4. 4.
    A.V. Evako, Characterizations of simple points, simple edges and simple cliques of digital spaces: one method of topology-preserving transformations of digital spaces by deleting simple points and edges. Graph. Models 73(1), 1–9 (2011)CrossRefGoogle Scholar
  5. 5.
    A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever, Multiscale vessel multiscale vessel enhancement filtering, in Medical Image Computing and Computer-Assisted Intervention, Cambridge (Springer, 1998), pp. 130–137Google Scholar
  6. 6.
    A. Franz, Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRefGoogle Scholar
  7. 7.
    H. Homann, Implementation of a 3D thinning algorithm. Insight J. July-Dec 2007Google Scholar
  8. 8.
    L. Ibanez, W. Schroeder, L. Ng, J. Cates, The ITK Software Guide: The Insight Segmentation and Registration Toolkit (Kitware Inc., Clifton Park, 2003)Google Scholar
  9. 9.
    P.P. Jonker, Skeletons in N dimensions using shape primitives. Pattern Recognit. Lett. 33(6), 677–686 (2002)CrossRefGoogle Scholar
  10. 10.
    T.C. Lee, R.L. Kashyap, C.N. Chu, Building skeleton models via 3-D medial surface/axis thinning algorithms. Comput. Vis. Graph. Image Process. 56(6), 462–478 (1994)CrossRefGoogle Scholar
  11. 11.
    F. Leymarie, M. Levine, Simulating the grassfire transform using an active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 14, 56–75 (1992)CrossRefGoogle Scholar
  12. 12.
    R. Li, S. Brown, L. Wilson, J. Young, S. Luo, Progressively refined patient-specific vessel system models from generic representations, in Proceedings of the Sixth Digital Image Computing: Techniques and Applications, Melbourne, pp. 184–189 (2002)Google Scholar
  13. 13.
    R. Li, S. Ourselin, Combining front propagation with shape knowledge for accurate curvilinear modelling, in Medical Image Computing and Computer-Assisted Intervention, ed. by R. Ellis, T. Peters (Springer, Berlin/Heidelberg, 2003), pp. 66–74Google Scholar
  14. 14.
    R. Li, S. Ourselin, Toward consistently behaving deformable models for improved automation in image segmentation, in Deformable Models – Biomedical and Clinical Applications, ed. by A. Farag, J.S. Suri (Springer, New York, 2007), pp. 259–292Google Scholar
  15. 15.
    N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1, 62–66 (1979)Google Scholar
  16. 16.
    A. Rosenfeld, J.L. Pfaltz, Distance functions on digital pictures. Pattern Recognit. 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  17. 17.
    M. Rücker, M.W. Laschke, D. Junker, C. Carvalho, A. Schramm, R. Mülhaupt, N.C. Gellrush, M.D. Menger, Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 27(29), 5027–5038 (2006)CrossRefGoogle Scholar
  18. 18.
    J.A. Sethian, A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. U.S.A. 93(4), 1591–1595 (1996)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    M. Sezgin, B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004)CrossRefGoogle Scholar
  20. 20.
    R. Su, C. Sun, C. Zhang, T.D. Pham, A new method for linear feature and junction enhancement in 2D images based on morphological operation, oriented anisotropic Gaussian function and Hessian information. Pattern Recognit. 47(10), 3193–3208 (2014)CrossRefGoogle Scholar
  21. 21.
    C. Sun, P. Vallotton, Fast linear feature detection using multiple directional non-maximum suppression. J. Microsc. 234(2), 147–157 (2009)CrossRefMathSciNetGoogle Scholar
  22. 22.
    P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. Wang, M. De Silva, S.-S. Tan, J. Gunnersen, Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision. Cytometry 71A(10), 889–895 (2007)CrossRefGoogle Scholar
  23. 23.
    D. Wang, R. Lagerstrom, C. Sun, L. Bischof, P. Vallotton, M. Götte, HCA-Vision: automated neurite outgrowth analysis. J. Biomol. Screen. 15(9), 1165–1170 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rongxin Li
    • 1
  • Dadong Wang
    • 1
  • Changming Sun
    • 1
  • Ryan Lagerstrom
    • 1
  • Hai Tan
    • 2
  • You He
    • 2
  • Tiqiao Xiao
    • 2
  1. 1.Digital Productivity FlagshipCSIRONorth Ryde, SydneyAustralia
  2. 2.Shanghai Synchrotron Radiation Facility (SSRF), Chinese Academy of SciencesShanghai Institute of Applied PhysicsPudong District, ShanghaiChina

Personalised recommendations