Abstract
Cochlear Implants (CIs) are implantable medical devices that can restore the sense of hearing in people with profound sensorineural hearing loss. Clinical trials assessing speech intelligibility in CI users have found large inter subject variability. One possibility to explain the variability are the individual differences in the interface created between electrodes and the auditory nerve. For example, the exact position of the electrodes in each cochlea may differ from one patient to another. Additionally the amount of functional auditory neurons might also vary considerably between CI users. In order to understand the variability, models of the voltage distribution of the electrically stimulated cochlea may be useful. With this purpose we have developed a model that allows to simulate the voltage distribution at different positions on the auditory nerve. Simulations show differences in the extracellular voltage of the spiral ganglions depending on the electrode positions and the cochlear size, which might explain some of the variability. Finally, the model of the electrically stimulated cochlea has been used to simulate the extracellular voltage patterns produced by different instrumental sounds. These patterns have been inserted in an automatic instrument classifier that helps to illustrate the mentioned variability.
Keywords
- Cochlear implant
- Finite element method
- Electric field
- Cochlea
- Sound coding strategy
- Instrument identification
This is a preview of subscription content, access via your institution.
Buying options











References
Berenstein, C.K., Mens, L.H., Mulder, J.J., Vanpoucke, F.J.: Current steering and current focusing in cochlear implants: Comparison of monopolar, tripolar, and virtual channel electrode configurations. Ear Hear. 29, 250–260 (2008)
Berenstein, C.K., Vanpoucke, F.J., Mulder, J.J., Mens, L.H.: Electric field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant recipients. Hear. Res. 270, 28–38 (2010)
Briaire, J.J.: Cochlear implants from model to patients, Thesis, ISBN 978-90-9023555-4, Universiteit Leiden (2008)
Colletti, L., Mandal, M., Colletti, V.: Cochlear implants in children younger than 6 months. Otolaryngol. Head Neck Surg. Off J. Am. Acad. Otolaryngol. Head Neck Surg. 147(1), 139–146 (2012)
Escudé, B., James, C., Deguine, O., Cochard, N., Eter, E., Fraysse, B.: The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol. Neurotology 11(suppl 1), 27–33 (2006)
Finley, C., Wilson, B., White, M.: Models of neural responsiveness to electrical stimulation. In: Miller, J., Spelman, F. (eds.) Cochlear Implants, pp. 55–96. Springer New York (1990)
Frijns, J.H.M., de Snoo, S.L., ten Kate, J.H.: Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. 95, 33–48 (1996)
Frijns, J.H.M., de Snoo, S.L., Schoonhoven, R.: Potential distributions and neural excitation pattervs in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. 87, 170–186 (1995)
Greenwood, D.D.: A cochlear frequency-position function for several species- 29 years later. J. Acoust. Soc. Am. 87, 2592–2605 (1990)
Hanekom, T.: Thesis—cochlea modelling. In: Faculty of Engineering, built Environment and Information Technology. University of Pretoria, Pretoria (2001)
Hughes, M.L., Vander Werff, K.R., Brown, C.J., Abbas, P.J., Kelsay, D.M., Teagle, H.F., Lowder, M.W.: A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in nucleus 24 cochlear implant users. Ear Hear. 22, 471–486 (2001)
Mens, L.H., Boyle, P.J., Mulder, J.J.: The Clarion electrode positioner: Approximation to the medial wall and current focussing. Audiol. Neurotol. 8, 166–175 (2003)
Nogueira, W., Bchner, A., Lenarz, Th, Edler, B.: A psychoacoustic, “NofM”-type speech coding strategy for cochlear implants. EURASIP J. Adv. Sig. Process. 2005, 101–672 (2005)
Nogueira, W., Litvak, L., Edler, B., Ostermann, J., Bchner, A.: Signal processing strategies for cochlear implants using current steering. EURASIP J. Advan. Sig. Process. 2009, 213–531 (2009)
De Raeve, L.A.: Longitudinal study on auditory perception and speech intelligibility in deaf children implanted younger than 18 months in comparison to those implanted at later ages. Otol Neurotol 31(8), 1261–1267 (2010)
Rattay, F., Leao, R.N., Felix, H.: A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability. Hear. Res. 153, 64–79 (2001)
Saba, R.: “Cohlear implant modelling: Stimulation and power consumption”, Thesis, university of Southampton. Faculty of Engineering and Environment, Institute of Sound and Vibration (2012)
Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken work recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1993)
Shannon, R.V., Fu, Q.J., Galvin III, J.: The number of spectral channels required for speech recognition depends on the difficulty of the listening situation Acta Otolaryngol. Suppl. 552, 50–54 (2004)
Smit, J.E., Hanekom, T., Hanekom, J.J.: Predicting action potential characteristics of human auditory nerve fibers through modifications of the Hudgkin-Huxley equations. S. Afr. J. Sci. 104, 284–292 (2008)
Wilson, B.S., Finley, C.C., Lawson, D.T., Wolford, R.D., Eddington, D.K., Rabinowitz, W.M.: Better speech recognition with cochlear I plants. Nature 352, 236–238 (1991)
Wilson, B.S., Dorman, M.F.: “Cochlear implants: A remarkable past and a brilliant future”. In: Proceedings of the 9th International Conference on Cochlear Implants and Related Sciences, pp. 3–21. Elsevier Science Bv, Vienna, AUSTRIA (1996)
Würfel, W., Lanfermann, H., Lenarz, T., Majdani, O.: “Cochlear length determination using Cone Beam Computed Tomography in a clincal setting”, Hear. Res. 316, 65–72 (2014)
Acknowledgments
The authors would like to thank the valuable contributions to the development of the model from Prof. Antoni Ivorra, Marcel Farres and Nikos Papachristou from the Universitat Pompeu Fabra. This work was supported by the DFG Cluster of Excellence EXC 1077/1 “Hearing4all”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Nogueira, W., Würfel, W., Penninger, R.T., Büchner, A. (2015). Development of a Model of the Electrically Stimulated Cochlea. In: Lenarz, T., Wriggers, P. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10981-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-10981-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10980-0
Online ISBN: 978-3-319-10981-7
eBook Packages: EngineeringEngineering (R0)