A Configurable, Inexpensive, Portable, Multi-channel, Multi-frequency, Multi-chromatic RGB LED System for SSVEP Stimulation

  • Surej Mouli
  • Ramaswamy Palaniappan
  • Ian P. Sillitoe
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 74)

Abstract

Steady state visual evoked potential (SSVEP) is extensively used in the research of brain-computer interface (BCI) and require a controllable and configurable light source. SSVEP requires appropriate control of visual stimulus parameters, such as flicker frequency, light intensity, multi-frequency light source and multi-spectral compositions. Light emitting diodes (LEDs) are extensively used as a light source as they are energy efficient, low power, multi-chromatic, have higher contrast, and support wider frequency ranges. Here, we present the design of a compact versatile visual stimulus which is capable of producing simultaneous multiple frequency RGB LED flicker suitable for a wide range of SSVEP paradigms. The hardware is based upon the open source Arduino platform and supports on-the-fly reprogramming with easily configurable user interface via USB. The design provides fourteen independent high output channels with customisable output voltages. The flicker frequencies can be easily customised within the frequency range of 5–50 Hz, using a look-up table. The LED flickers are generated with single RGB LEDs which generate the required colour or frequency combinations for combined multi-frequency flicker with variable duty cycle to generate SSVEP. Electroencephalogram (EEG) signals have been successfully recorded from five subjects using the stimulator for different frequencies, colours, duty cycle, intensity and multiple frequency RGB source, thereby demonstrating the high usability, adaptability and flexibility of the stimulator. Finally we discuss the possible improvements to the stimulator which could provide real time user feedback to reduce visual fatigue and so increase the level of user comfort.

Keywords

Brain-computer interface Electroencephalogram LED Steady-state visual evoked potential 

References

  1. 1.
    Wu, Z., Kang, L., Shen, F., Fang, B.: The closed-loop human-computer interface: active information acquisition for vision-brain-hand to computer (VBH-C) interaction based on force tablet. In: Proceedings of First International Conference on Neural Interface and Control, China, 26–28 May 2005, pp. 1–5. doi: 10.1109/ICNIC.2005.1499828 (2005)
  2. 2.
    Chao, G.: Human-computer interaction: process and principles of human-computer interface design. In: International Conference on Computer and Automation Engineering, ICCAE ‘09, 8–10 March 2009, Bangkok, pp. 230–233. doi: 10.1109/ICCAE.2009.23 (2009)
  3. 3.
    Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., Cherubini, A., Marciani, M.G., Babiloni, F.: Non-invasive braincomputer interface system: towards its application as assistive technology. Brain Res. Bull. 75(6), 796–803 (2008)CrossRefGoogle Scholar
  4. 4.
    Berger, H.: Uber das Elektrenkephalogramm des Menschen. ISHN (1929)Google Scholar
  5. 5.
    Pal, P.R., Khobragade, P., Panda, R.: Expert system design for classification of brain waves and epileptic-seizure detection. In: Proceedings of IEEE Students’ Technology Symposium (TechSym), Kharagpur, 14–16 Jan 2011, pp. 187–192. doi: 10.1109/TECHSYM.2011.5783822 (2011)
  6. 6.
    Rice, J.K., Rorden, C., Little, J.S., Parra, L.C.: Subject position affects EEG magnitudes. NeuroImage 64, 476–484 (2013)CrossRefGoogle Scholar
  7. 7.
    Chi, Y., Wang, Y.-T., Wang, Y., Maier, C., Jung, T.-P., Cauwenberghs, G.: Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 20(2), 228–235 (2012)CrossRefGoogle Scholar
  8. 8.
    Allison, B., Brunner, C., Altsttter, C., Wagner, I., Grissmann, S., Neuper, C.: A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control. J. Neurosci. Methods 2(209), 299–307 (2012)CrossRefGoogle Scholar
  9. 9.
    Brunner, C., Allison, B.Z., Krusienski, D.J., Kaiser, V., Mller-Putz, G.R., Pfurtscheller, G., Neuper, C.: Improved signal processing approaches in an offline simulation of a hybrid braincomputer interface. J. Neurosci. Methods 188(1), 165–173 (2010)CrossRefGoogle Scholar
  10. 10.
    Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Mller, K.-R., Blankertz, B.: Enhanced performance by a hybrid NIRSEEG brain computer interface. NeuroImage 59(1), 519–529 (2012)CrossRefGoogle Scholar
  11. 11.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kubler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398(6725), 297–298 (1999)CrossRefGoogle Scholar
  12. 12.
    De Massari, D., Matuz, T., Furdea, A., Ruf, C.A., Halder, S., Birbaumer, N.: Braincomputer interface and semantic classical conditioning of communication in paralysis. Biol. Psychol. 92(2), 267–274 (2012)CrossRefGoogle Scholar
  13. 13.
    Donchin, E., Spencer, K., Wijesinghe, R.: The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 8(2), 174–179 (2000)CrossRefGoogle Scholar
  14. 14.
    Lled, L.D., Beda, A., Iez, E., Azorn, J.M.: Internet browsing application based on electrooculography for disabled people. Expert Syst. Appl. 40(7), 2640–2648 (2013)Google Scholar
  15. 15.
    Muller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55(1), 361–364 (2008)CrossRefGoogle Scholar
  16. 16.
    Brumberg, J.S., Nieto-Castanon, A., Kennedy, P.R., Guenther, F.H.: Brain-computer interfaces for speech communication. Speech Commun. 52(4), 367–379 (2010)CrossRefGoogle Scholar
  17. 17.
    Lee, T.-S., Juinn Goh, S., Quek, S.Y., Guan, C., Cheung, Y.B., Krishnan, K.R.: Efficacy and usability of a brain-computer interface system in improving cognition in the elderly. Alzheimers Dementia 9(4), P296 (2013)Google Scholar
  18. 18.
    Liberati, G., Veit, R., Dalboni da Rocha, J., Kim, S., Lul, D., von Arnim, C., Raffone, A., Belardinelli, M.O., Birbaumer, N., Sitaram, R.: Combining classical conditioning and brain-state classification for the development of a brain-computer interface (BCI) for Alzheimer’s patients. Alzheimers Dementia 8(4), P515 (2012)Google Scholar
  19. 19.
    Pires, G., Nunes, U., Castelo-Branco, M.: Evaluation of brain-computer interfaces in accessing computer and other devices by people with severe motor impairments. Procedia Comput. Sci. 14, 283–292 (2012)CrossRefGoogle Scholar
  20. 20.
    Guneysu, A., Akin, H.L.: An SSVEP based BCI to control a humanoid robot by using portable EEG device. In: Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3–7 July 2013, Osaka, pp. 6905–6908. doi: 10.1109/EMBC.2013.6611145 (2013)
  21. 21.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  22. 22.
    Ergenoglu, T., Demiralp, T., Beydagi, H., Karamrsel, S., Devrim, M., Ermutlu, N.: Slow cortical potential shifts modulate P300 amplitude and topography in humans. Neurosci. Lett. 251(1), 61–64 (1998)CrossRefGoogle Scholar
  23. 23.
    Azar, A.T., Balas, V.E., Olariu, T.: Classification of EEG-based brain-computer interfaces. Adv. Intell. Comput. Technol. Dec. Support Syst. 486, 97–106 (2014). doi: 10.1007/978-3-319-00467-9_9 CrossRefGoogle Scholar
  24. 24.
    Edlinger, G., Guger, C.: A hybrid brain-computer interface for improving the usability of a smart home control. In: Proceedings of International Conference on Complex Medical Engineering (CME), 1–4 July 2012, Kobe, pp. 182–185. doi: 10.1109/ICCME.2012.6275714 (2012)
  25. 25.
    Hwang, H.-J., Hwan Kim, D., Han, C.-H., Im, C.-H.: A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based braincomputer interface (BCI). Brain Res. 1515, 66–77 (2013)Google Scholar
  26. 26.
    Hwang, H.-J., Lim, J.-H., Lee, J.-H., Im, C.-H.: Implementation of a mental spelling system based on steady-state visual evoked potential (SSVEP). In: Proceeding of International Winter Workshop on Brain-Computer Interface (BCI), 18–20 Feb 2013, Gangwo, pp. 81–83. doi: 10.1109/IWW–BCI.2013.6506638 (2013)
  27. 27.
    Lopez-Gordo, M.A., Pelayo, F., Prieto, A.: A high performance SSVEP-BCI without gazing. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), Barcelona, 18–23 July 2010, pp. 1–5. doi: 10.1109/IJCNN.2010.5596325 (2010)
  28. 28.
    Lopez-Gordo, M.A., Prieto, A., Pelayo, F., Morillas, C.: Customized stimulation enhances performance of independent binary SSVEP-BCIs. Clin. Neurophysiol. 122(1), 128–133 (2011)CrossRefGoogle Scholar
  29. 29.
    Nishifuji, S., Kuroda, T., Tanaka, S.: EEG changes associated with mental focusing to flicker stimuli under eyes closed condition for SSVEP-based BCI. In: Proceedings of SICE Annual Conference (SICE), Akita, 20–23 Aug 2012, pp. 475–480. ISBN: 978-1-4673-2259-1 (2012)Google Scholar
  30. 30.
    Yueh-Ru, Y.: Implementation of a colorful RGB-LED light source with an 8-bit microcontroller. In: Proceedings of 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), Taichung, 15–17 June 2010, pp. 1951–1956. doi: 10.1109/ICIEA.2010.5515525 (2010)
  31. 31.
    Brikou, A., Tzelepi, A., Papathanasopoulos, P., Bezerianos, A.: Simultaneous estimation of the transient and steady-state VEP using the Prony method. In: Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, 3-6 Nov 1994, Baltimore, Vol. 1, pp. 193–194. doi: 10.1109/IEMBS.1994.411813 (1994)
  32. 32.
    Krusienski, D.J., Sellers, E.W., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: Toward enhanced P300 speller performance. J. Neurosci. Methods 167(1), 15–21 (2008)CrossRefGoogle Scholar
  33. 33.
    Herrmann, C.S.: Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137(3–4), 346–353 (2001)CrossRefGoogle Scholar
  34. 34.
    Pastor, M.A., Artieda, J., Arbizu, J., Valencia, M., Masdeu, J.C.: Human cerebral activation during steady-state visual-evoked responses. J. Neurosci. 23(37), 11621–11627 (2003)Google Scholar
  35. 35.
    Resalat, S.N., Saba, V., Afdideh, F., Heidarnejad, A.: High-speed SSVEP-based BCI: study of various frequency pairs and inter-sources distances. In: Proceedings of IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Hong Kong, 5–7 Jan 2012, pp. 220–223. doi: 10.1109/BHI.2012.6211550 (2012)
  36. 36.
    Cecotti, H., Rivet, B.: Effect of the visual signal structure on steady-state visual evoked potentials detection. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 22–27 May 2011, Prague, pp. 657–660. doi: 10.1109/ICASSP.2011.5946489 (2011)
  37. 37.
    Teng, C., Feng, W., Peng Un, M., Pui-In, M., Mang, I.V., Yong, H.: Flashing color on the performance of SSVEP-based brain-computer interfaces. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, 28 Aug 2012–1 Sept 1 2012, pp. 1819–1822. doi: 10.1109/EMBC.2012.6346304 (2012)
  38. 38.
    Po-Lei, L., Chia-Lung, Y., Cheng, J.Y.S., Chia-Yen, Y., Gong-Yau, L.: An SSVEP-based BCI using high duty-cycle visual flicker. IEEE Trans. Biomed. Eng. 58(12), 3350–3359 (2011)CrossRefGoogle Scholar
  39. 39.
    Walter, S., Quigley, C., Andersen, S.K., Mueller, M.M.: Effects of overt and covert attention on the steady-state visual evoked potential. Neurosci. Lett. 519(1), 37–41 (2012)CrossRefGoogle Scholar
  40. 40.
    Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng. 8(2), 211–214 (2000)CrossRefGoogle Scholar
  41. 41.
    Yijun, W., Ruiping, W., Xiaorong, G., Bo, H., Shangkai, G.: A practical VEP-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 234–240 (2006)CrossRefGoogle Scholar
  42. 42.
    Martinez, P., Bakardjian, H., Cichocki, A.: Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm. Comput. Intell. Neurosci. 2007, 1–13 (2007)CrossRefGoogle Scholar
  43. 43.
    Bakardjian, H., Tanaka, T., Cichocki, A.: Optimization of SSVEP brain responses with application to eight-command brain-computer interface. Neurosci. Lett. 469(1), 34–38 (2010)CrossRefGoogle Scholar
  44. 44.
    Hwang, H.J., Lim, J.H., Jung, Y.J., Choi, H., Lee, S.W., Im, C.H.: Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. J. Neurosci. Methods 208(1), 59–65 (2012)CrossRefGoogle Scholar
  45. 45.
    Zhu, D., Bieger, J., Garcia Molina, G., Aarts, R.M.: A survey of stimulation methods used in SSVEP-based BCIs. Comput. Intell. Neurosci. 2010, 12 (2010)Google Scholar
  46. 46.
    Strasburger, H., Wstenberg, T., Jncke, L.: Calibrated LCD/TFT stimulus presentation for visual psychophysics in fMRI. J. Neurosci. Methods 121(1), 103–110 (2002)CrossRefGoogle Scholar
  47. 47.
    Mun, S., Park, M.-C., Park, S., Whang, M.: SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D. Neurosci. Lett. 525(2), 89–94 (2012)CrossRefGoogle Scholar
  48. 48.
    Punsawad, Y., Wongsawat, Y.: Motion visual stimulus for SSVEP-based BCI system. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, 28 Aug 2012–1 Sept 2012, pp. 3837–3840. doi: 10.1109/EMBC.2012.6346804 (2012)
  49. 49.
    Volosyak, I., Valbuena, D., Luth, T., Malechka, T., Graser, A.: BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 19(3), 232–239 (2011)CrossRefGoogle Scholar
  50. 50.
    Zhang, D., Gao, X., Gao, S., Engel, A., Maye, A.: An independent brain-computer interface based on covert shifts of non-spatial visual attention. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, 3–6 Sept 2009, pp. 539–542. doi: 10.1109/IEMBS.2009.5333740 (2009)
  51. 51.
    Zhu, D., Molina, G., Mihajlovic, V., Aarts, R.: Phase synchrony analysis for SSVEP-based BCIs. In: Proceedings of 2nd International Conference on Computer Engineering and Technology (ICCET), Chengdu, 16–18 April 2010, Vol. 2, pp. 329–333. doi: 10.1109/ICCET.2010.5485465 (2010)
  52. 52.
    Da Silva Pinto, M.A., de Souza, J.K.S., Baron, J., Tierra-Criollo, C.J.: A low-cost, portable, micro-controlled device for multi-channel LED visual stimulation. J. Neurosci. Methods 197(1), 82–91 (2011)CrossRefGoogle Scholar
  53. 53.
    Demontis, G.C., Sbrana, A., Gargini, C., Cervetto, L.: A simple and inexpensive light source for research in visual neuroscience. J. Neurosci. Methods 146(1), 13–21 (2005)CrossRefGoogle Scholar
  54. 54.
    Rogers, B., Shih, Y.-Y.I., Garza, B.D.L., Harrison, J.M., Roby, J., Duong, T.Q.: A low cost color visual stimulator for fMRI. J. Neurosci. Methods 204(2), 379–382 (2012)CrossRefGoogle Scholar
  55. 55.
    Mouli, S., Palaniappan, R., Sillitoe, I.P., Gan, J.Q.: Performance analysis of multi-frequency SSVEP-BCI using clear and frosted colour LED stimuli. In: Proceedings of IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), Chania, 10–13 Nov 2013, pp. 1–4. doi: 10.1109/BIBE.2013.6701552 (2013)
  56. 56.
    Cao, F., Li, D., He, X., Gao, Y., Cheng, M., Zou, N.: Effects of flicker on vision in LED light source dimming control process. In: Proceedings of IET International Conference on Communication Technology and Application (ICCTA), 14–16 Oct. 2011, Beijing, pp. 255–258. doi: 10.1051/ita:2007005 (2011)
  57. 57.
    Prueckl, R., Guger, C.: Controlling a robot with a brain-computer interface based on steady state visual evoked potentials. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), Barcelona, 18–23 July 2010, pp 1–5. doi: 10.1109/IJCNN.2010.5596688 (2010)
  58. 58.
    Teikari, P., Najjar, R.P., Malkki, H., Knoblauch, K., Dumortier, D., Gronfier, C., Cooper, H.M.: An inexpensive Arduino-based LED stimulator system for vision research. J. Neurosci. Methods 211(2), 227–236 (2012)CrossRefGoogle Scholar
  59. 59.
    Arduino: http://www.arduino.cc (2005). Accessed 1 March 2014
  60. 60.
    Wiring: http://wiring.org.co (2003). Accessed 1 March 2014
  61. 61.
    Processing: http://www.processing.org (2003). Accessed 1 March 2014
  62. 62.
    Guoqiao, T.: Modelling of LED light source reliability. In: Proceedings of 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 15–19 July 2013, Suzhou, pp. 255–258. doi: 10.1109/IPFA.2013.6599163 (2013)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Surej Mouli
    • 1
  • Ramaswamy Palaniappan
    • 2
  • Ian P. Sillitoe
    • 1
  1. 1.School of EngineeringUniversity of WolverhamptonTelfordUK
  2. 2.School of ComputingUniversity of KentMedwayUK

Personalised recommendations