Skip to main content

Imaging of the Biomaterial Structure and Function

  • Chapter
  • First Online:
Biomaterials for Cardiac Regeneration

Abstract

Biomaterials have shown promise for cardiac regenerative therapies as a scaffold to support endogenous and exogenous therapeutic elements. However, the structure and function of biomaterial constructs have not been fully elucidated. Imaging modalities have been applied to investigate scaffold physical structures and cell–scaffold interactions. These modalities are broadly classified depending on the type of energy (optical, ultrasound, X-ray, magnetic, or nuclear) and detection equipment applied to create images. Because each imaging technique has limitations, combining different modalities (e.g., photo-acoustic methods) has been introduced to improve the precision. The selection of the optimal modality for biomaterial imaging depends on the type of biomaterial and also the objectives of the experiment. Optical imaging, for example, has largely been used for in vitro experiments. Longitudinal animal studies, however, require modalities with higher depth of tissue penetration. In this chapter, biomaterial imaging modalities are discussed with a main focus on myocardial regeneration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi A, Mcneill B, Vulesevic B, Kordos M, Mesana L, Thorn S, Renaud JM, Manthorp E, Kuraitis D, Toeg H, Mesana TG, Davis DR, Beanlands RS, Dasilva JN, Dekemp RA, Ruel M, Suuronen EJ (2014) The role of integrin alpha2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials 35:4749–4758

    Article  Google Scholar 

  • Alberich-Bayarri A, Moratal D, Ivirico JL, Rodriguez Hernandez JC, Valles-Lluch A, Marti-Bonmati L, Estelles JM, Mano JF, Pradas MM, Ribelles JL, Salmeron-Sanchez M (2009) Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. J Biomed Mater Res B Appl Biomater 91:191–202

    Article  Google Scholar 

  • Appel AA, Anastasio MA, Larson JC, Brey EM (2013) Imaging challenges in biomaterials and tissue engineering. Biomaterials 34:6615–6630

    Article  Google Scholar 

  • Artzi N, Oliva N, Puron C, Shitreet S, Artzi S, Bon Ramos A, Groothuis A, Sahagian G, Edelman ER (2011) In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nat Mater 10:704–709

    Article  Google Scholar 

  • Assmann A, Akhyari P, Delfs C, Flogel U, Jacoby C, Kamiya H, Lichtenberg A (2012) Development of a growing rat model for the in vivo assessment of engineered aortic conduits. J Surg Res 176:367–375

    Article  Google Scholar 

  • Bago JR, Aguilar E, Alieva M, Soler-Botija C, Vila OF, Claros S, Andrades JA, Becerra J, Rubio N, Blanco J (2013) In vivo bioluminescence imaging of cell differentiation in biomaterials: a platform for scaffold development. Tissue Eng Part A 19:593–603

    Article  Google Scholar 

  • Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, Southern JF, Fujimoto JG (1996) Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 93:1206–1213

    Article  Google Scholar 

  • Bushberg JT, Seibert JA, Leidholdt EM, Boone EM (2011) The essential physics of medical imaging. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Buttafoco L, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Physical characterization of vascular grafts cultured in a bioreactor. Biomaterials 27:2380–2389

    Article  Google Scholar 

  • Cai X, Zhang Y, Li L, Choi SW, Macewan MR, Yao J, Kim C, Xia Y, Wang LV (2013) Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography. Tissue Eng Part C Methods 19:196–204

    Article  Google Scholar 

  • Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, Drukker M, Dylla SJ, Connolly AJ, Chen X, Weissman IL, Gambhir SS, Wu JC (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014

    Article  Google Scholar 

  • Chimenti I, Rizzitelli G, Gaetani R, Angelini F, Ionta V, Forte E, Frati G, Schussler O, Barbetta A, Messina E, Dentini M, Giacomello A (2011) Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials 32:9271–9281

    Article  Google Scholar 

  • Chouinard JA, Rousseau JA, Beaudoin JF, Vermette P, Lecomte R (2012) Positron emission tomography detection of human endothelial cell and fibroblast monolayers: effect of pretreament and cell density on 18FDG uptake. Vasc Cell 4:5

    Article  Google Scholar 

  • Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48:907–913, Epub 2006 Aug 17

    Article  Google Scholar 

  • Cunha-Reis C, El Haj AJ, Yang X, Yang Y (2011) Fluorescent labeling of chitosan for use in non-invasive monitoring of degradation in tissue engineering. J Tissue Eng Regen Med 7:39–50

    Article  Google Scholar 

  • Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (1999) In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite. J Mater Sci Mater Med 10:793–796

    Article  Google Scholar 

  • Dayton PA, Rychak JJ (2007) Molecular ultrasound imaging using microbubble contrast agents. Front Biosci 12:5124–5142

    Article  Google Scholar 

  • Fercher AF (2010) Optical coherence tomography—development, principles, applications. Z Med Phys 20:251–276

    Article  Google Scholar 

  • Frias JC, Williams KJ, Fisher EA, Fayad ZA (2004) Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126:16316–16317

    Article  Google Scholar 

  • Georgakoudi I, Rice WL, Hronik-Tupaj M, Kaplan DL (2008) Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng Part B Rev 14:321–340

    Article  Google Scholar 

  • Gerhardt LC, Widdows KL, Erol MM, Burch CW, Sanz-Herrera JA, Ochoa I, Stampfli R, Roqan IS, Gabe S, Ansari T, Boccaccini AR (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32:4096–4108

    Article  Google Scholar 

  • Giordano C, Thorn SL, Renaud JM, Al-Atassi T, Boodhwani M, Klein R, Kuraitis D, Dwivedi G, Zhang P, Dasilva JN, Ascah KJ, Dekemp RA, Suuronen EJ, Beanlands RS, Ruel M (2013) Pre-clinical evaluation of biopolymer-delivered circulating angiogenic cells in a swine model of hibernating myocardium. Circ Cardiovasc Imaging 6(6):982–991

    Article  Google Scholar 

  • Hsieh YJ, Hwu L, Ke CC, Yeh SH, Lin CF, Chen FD, Wang HE, Lin KP, Chen RC, Liu RS (2014) Rational design of a triple reporter gene for multimodality molecular imaging. Biomed Res Int 2014:605358

    Google Scholar 

  • Hwang Do W, Jang SJ, Kim YH, Kim HJ, Shim IK, Jeong JM, Chung JK, Lee MC, Lee SJ, Kim SU, Kim S, Lee DS (2008) Real-time in vivo monitoring of viable stem cells implanted on biocompatible scaffolds. Eur J Nucl Med Mol Imaging 35:1887–1898

    Article  Google Scholar 

  • Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018

    Article  Google Scholar 

  • Johnson TD, Christman KL (2013) Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin Drug Deliv 10:59–72

    Article  Google Scholar 

  • Jose J, Manohar S, Kolkman RG, Steenbergen W, Van Leeuwen TG (2009) Imaging of tumor vasculature using Twente photoacoustic systems. J Biophotonics 2:701–717

    Article  Google Scholar 

  • Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:S29–S37

    Article  Google Scholar 

  • Kempen DH, Yaszemski MJ, Heijink A, Hefferan TE, Creemers LB, Britson J, Maran A, Classic KL, Dhert WJ, Lu L (2009) Non-invasive monitoring of BMP-2 retention and bone formation in composites for bone tissue engineering using SPECT/CT and scintillation probes. J Control Release 134:169–176

    Article  Google Scholar 

  • Kim K, Jeong CG, Hollister SJ (2008) Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging. Acta Biomater 4:783–790

    Article  Google Scholar 

  • Kim SH, Lee JH, Hyun H, Ashitate Y, Park G, Robichaud K, Lunsford E, Lee SJ, Khang G, Choi HS (2013) Near-infrared fluorescence imaging for noninvasive trafficking of scaffold degradation. Sci Rep 3:1198

    Google Scholar 

  • Kofidis T, Lenz A, Boublik J, Akhyari P, Wachsmann B, Mueller-Stahl K, Hofmann M, Haverich A (2003) Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials 24:5009–5014

    Article  Google Scholar 

  • Komlev VS, Mastrogiacomo M, Peyrin F, Cancedda R, Rustichelli F (2009) X-ray synchrotron radiation pseudo-holotomography as a new imaging technique to investigate angio- and microvasculogenesis with no usage of contrast agents. Tissue Eng Part C Methods 15:425–430

    Article  Google Scholar 

  • Korpanty G, Chen S, Shohet RV, Ding J, Yang B, Frenkel PA, Grayburn PA (2005) Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Ther 12:1305–1312

    Article  Google Scholar 

  • Lammertsma AA (2001) PET/SPECT: functional imaging beyond flow. Vision Res 41:1277–1281

    Article  Google Scholar 

  • Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14:61–86

    Article  Google Scholar 

  • Li X, Anton N, Zuber G, Zhao M, Messaddeq N, Hallouard F, Fessi H, Vandamme TF (2013) Iodinated alpha-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials 34:481–491

    Article  Google Scholar 

  • Liang X, Graf BW, Boppart SA (2009) Imaging engineered tissues using structural and functional optical coherence tomography. J Biophotonics 2:643–655. doi:10.1002/jbio.200910048

    Article  Google Scholar 

  • Logeart-Avramoglou D, Oudina K, Bourguignon M, Delpierre L, Nicola MA, Bensidhoum M, Arnaud E, Petite H (2010) In vitro and in vivo bioluminescent quantification of viable stem cells in engineered constructs. Tissue Eng Part C Methods 16:447–458

    Article  Google Scholar 

  • Marelli B, Ghezzi CE, Mohn D, Stark WJ, Barralet JE, Boccaccini AR, Nazhat SN (2011) Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 32:8915–8926

    Article  Google Scholar 

  • Mason C, Markusen JF, Town MA, Dunnill P, Wang RK (2004) Doppler optical coherence tomography for measuring flow in engineered tissue. Biosens Bioelectron 20:414–423

    Article  Google Scholar 

  • Matsumura G, Nitta N, Matsuda S, Sakamoto Y, Isayama N, Yamazaki K, Ikada Y (2012) Long-term results of cell-free biodegradable scaffolds for in situ tissue-engineering vasculature: in a canine inferior vena cava model. PLoS One 7:e35760

    Article  Google Scholar 

  • Mertens ME, Hermann A, Buhren A, Olde-Damink L, Mockel D, Gremse F, Ehling J, Kiessling F, Lammers T (2014) Iron oxide-labeled collagen scaffolds for non-invasive MR imaging in tissue engineering. Adv Funct Mater 24:754–762

    Article  Google Scholar 

  • Mickel W, Munster S, Jawerth LM, Vader DA, Weitz DA, Sheppard AP, Mecke K, Fabry B, Schroder-Turk GE (2008) Robust pore size analysis of filamentous networks from three-dimensional confocal microscopy. Biophys J 95:6072–6080

    Article  Google Scholar 

  • Mierke CT, Kollmannsberger P, Zitterbart DP, Diez G, Koch TM, Marg S, Ziegler WH, Goldmann WH, Fabry B (2010) Vinculin facilitates cell invasion into three-dimensional collagen matrices. J Biol Chem 285:13121–13130

    Article  Google Scholar 

  • Nieuwoudt M, Wiggett S, Malfeld S, Van Der Merwe SW (2009) Imaging glucose metabolism in perfluorocarbon-perfused hepatocyte bioreactors using positron emission tomography. J Artif Organs 12:247–257

    Article  Google Scholar 

  • Penheiter AR, Russell SJ, Carlson SK (2012) The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 12:33–47

    Article  Google Scholar 

  • Radisic M, Christman KL (2013) Materials science and tissue engineering: repairing the heart. Mayo Clin Proc 88:884–898

    Article  Google Scholar 

  • Rane AA, Christman KL (2011) Biomaterials for the treatment of myocardial infarction: a 5-year update. J Am Coll Cardiol 58:2615–2629

    Article  Google Scholar 

  • Rao VP, Miyagi N, Ricci D, Carlson SK, Morris JC 3rd, Federspiel MJ, Bailey KR, Russell SJ, Mcgregor CG (2007) Sodium iodide symporter (hNIS) permits molecular imaging of gene transduction in cardiac transplantation. Transplantation 84:1662–1666

    Article  Google Scholar 

  • Sadikot RT, Blackwell TS (2005) Bioluminescence imaging. Proc Am Thorac Soc 2(537–40):511–512

    Google Scholar 

  • Smith LE, Smallwood R, Macneil S (2010) A comparison of imaging methodologies for 3D tissue engineering. Microsc Res Tech 73:1123–1133

    Article  Google Scholar 

  • Srinivas M, Aarntzen EH, Bulte JW, Oyen WJ, Heerschap A, De Vries IJ, Figdor CG (2010) Imaging of cellular therapies. Adv Drug Deliv Rev 62:1080–1093

    Article  Google Scholar 

  • Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    Article  Google Scholar 

  • Terrovitis J, Lautamaki R, Bonios M, Fox J, Engles JM, Yu J, Leppo MK, Pomper MG, Wahl RL, Seidel J, Tsui BM, Bengel FM, Abraham MR, Marban E (2009) Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol 54:1619–1626

    Article  Google Scholar 

  • Tillman BW, Yazdani SK, Neff LP, Corriere MA, Christ GJ, Soker S, Atala A, Geary RL, Yoo JJ (2012) Bioengineered vascular access maintains structural integrity in response to arteriovenous flow and repeated needle puncture. J Vasc Surg 56:783–793

    Article  Google Scholar 

  • Tran N, Poussier S, Franken PR, Maskali F, Groubatch F, Vanhove C, Antunes L, Karcher G, Villemot JP, Marie PY (2006) Feasibility of in vivo dual-energy myocardial SPECT for monitoring the distribution of transplanted cells in relation to the infarction site. Eur J Nucl Med Mol Imaging 33:709–715

    Article  Google Scholar 

  • Vielreicher M, Schurmann S, Detsch R, Schmidt MA, Buttgereit A, Boccaccini A, Friedrich O (2013) Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J R Soc Interface 10:20130263

    Article  Google Scholar 

  • Walker JM, Myers AM, Schluchter MD, Goldberg VM, Caplan AI, Berilla JA, Mansour JM, Welter JF (2011) Nondestructive evaluation of hydrogel mechanical properties using ultrasound. Ann Biomed Eng 39:2521–2530

    Article  Google Scholar 

  • Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462

    Article  Google Scholar 

  • White NS, Errington RJ (2005) Fluorescence techniques for drug delivery research: theory and practice. Adv Drug Deliv Rev 57:17–42

    Article  Google Scholar 

  • Xu C, Vinegoni C, Ralston TS, Luo W, Tan W, Boppart SA (2006) Spectroscopic spectral-domain optical coherence microscopy. Opt Lett 31:1079–1081

    Article  Google Scholar 

  • Xu H, Othman SF, Magin RL (2008) Monitoring tissue engineering using magnetic resonance imaging. J Biosci Bioeng 106:515–527

    Article  Google Scholar 

  • Yang Y, Dorsey SM, Becker ML, Lin-Gibson S, Schumacher GE, Flaim GM, Kohn J, Simon CG Jr (2008) X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods. Biomaterials 29:1901–1911

    Article  Google Scholar 

  • Zanzonico P (2012) Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res 177:349–364

    Article  Google Scholar 

  • Zemp RJ, Song L, Bitton R, Shung KK, Wang LV (2008) Realtime photoacoustic microscopy of murine cardiovascular dynamics. Opt Express 16:18551–18556

    Article  Google Scholar 

  • Zhang Y, Thorn S, Dasilva JN, Lamoureux M, Dekemp RA, Beanlands RS, Ruel M, Suuronen EJ (2008) Collagen-based matrices improve the delivery of transplanted circulating progenitor cells: development and demonstration by ex vivo radionuclide cell labeling and in vivo tracking with positron-emission tomography. Circ Cardiovasc Imaging 1:197–204

    Article  Google Scholar 

  • Zhang Y, Dasilva JN, Hadizad T, Thorn S, Kuraitis D, Renaud JM, Ahmadi A, Kordos M, Dekemp RA, Beanlands RS, Suuronen EJ, Ruel M (2012) (18)F-FDG cell labeling may underestimate transplanted cell homing: more accurate, efficient and stable cell labeling with hexadecyl-4-[(18)F]fluorobenzoate for in vivo tracking of transplanted human progenitor cells by positron emission tomography. Cell Transplant 21:1821–1835

    Article  Google Scholar 

  • Zhang YS, Cai X, Yao J, Xing W, Wang LV, Xia Y (2014) Non-invasive and in situ characterization of the degradation of biomaterial scaffolds by volumetric photoacoustic microscopy. Angew Chem Int Ed Engl 53:184–188

    Article  Google Scholar 

  • Zheng K, Rupnick MA, Liu B, Brezinski ME (2009) Three dimensional OCT in the engineering of tissue constructs: a potentially powerful tool for assessing optimal scaffold structure. Open Tissue Eng Regen Med J 2:8–13

    Article  Google Scholar 

  • Zhou J, Chen J, Sun H, Qiu X, Mou Y, Liu Z, Zhao Y, Li X, Han Y, Duan C, Tang R, Wang C, Zhong W, Liu J, Luo Y, Mengqiu Xing M, Wang C (2014) Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function. Sci Rep 4:3733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. deKemp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahmadi, A., Mielniczuk, L.M., Thackeray, J.T., Beanlands, R.S., deKemp, R.A. (2015). Imaging of the Biomaterial Structure and Function. In: Suuronen, E., Ruel, M. (eds) Biomaterials for Cardiac Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-10972-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10972-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10971-8

  • Online ISBN: 978-3-319-10972-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics