Skip to main content

Whole-Heart Tissue Engineering: Use of Three-Dimensional Matrix Scaffolds

  • Chapter
  • First Online:
Biomaterials for Cardiac Regeneration

Abstract

In front of the actual limitations in the treatment of end-stage HF, there is a clinical demand for alternative therapy concepts in order to further increase clinical outcome and to find customized therapy concepts for patients suffering from end-stage heart failure. With the advance of the tissue engineering concept, new approaches to the treatment of HF are being proposed and scientifically explored. A recently introduced strategy in the tissue engineering field is named whole-organ tissue engineering (WOTE) aiming at the in vitro generation of an entire organ in its anatomic integrity and functional capacity. This chapter is dedicated to cardiac WOTE, also termed whole-heart tissue engineering (WHTE). Beside clinical background and competing experimental approaches this chapter will review current concepts of decellularization, repopulation strategies for whole organ scaffolds, and possible sources of donor cells for organ engineering. Finally, the relevance and feasibility of in vitro conditioning of tissue-engineered whole hearts using bioreactor technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulrazzak H, Moschidou D, Jones G, Guillot PV (2010) Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface 7(Suppl 6):S689–S706

    Google Scholar 

  • Akhyari P, Aubin H, Gwanmesia P, Barth M, Hoffmann S, Huelsmann J, Preuss K, Lichtenberg A (2011) The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods 17:915–926

    Google Scholar 

  • Akhyari P, Fedak PW, Weisel RD, Lee TY, Verma S, Mickle DA, Li R (2002) Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106:I137–I142

    Google Scholar 

  • Akhyari P, Kamiya H, Haverich A, Karck M, Lichtenberg A (2008) Myocardial tissue engineering: the extracellular matrix. Eur J Cardiothorac Surg 34:229–241

    Google Scholar 

  • Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, Mclaughlin TA, Hartzell CR (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5:103–118

    Google Scholar 

  • Assmann A, Delfs C, Munakata H, Schiffer F, Horstkotter K, Huynh K, Barth M, Stoldt VR, Kamiya H, Boeken U, Lichtenberg A, Akhyari P (2013) Acceleration of autologous in vivo recellularization of decellularized aortic conduits by fibronectin surface coating. Biomaterials 34:6015–6026

    Google Scholar 

  • Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Google Scholar 

  • Aubin H, Kranz A, Hulsmann J, Lichtenberg A, Akhyari P (2013a) Decellularized whole heart for bioartificial heart. Methods Mol Biol 1036:163–178

    Google Scholar 

  • Aubin H, Kranz A, Hulsmann J, Pinto A, Barth M, Fomin A, Lichtenberg A, Akhyari P (2013b) A novel native derived coronary artery tissue-flap model. Tissue Eng Part C Methods 19:970–980

    Google Scholar 

  • Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM, Akhyari P, Khademhosseini A (2010) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31:6941–6951

    Google Scholar 

  • Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Google Scholar 

  • Bochicchio GV, De Castro GP, Bochicchio KM, Weeks J, Rodriguez E, Scalea TM (2013) Comparison study of acellular dermal matrices in complicated hernia surgery. J Am Coll Surg 217:606–613

    Google Scholar 

  • Bonvillain RW, Scarritt ME, Pashos NC, Mayeux JP, Meshberger CL, Betancourt AM, Sullivan DE, Bunnell BA (2013) Nonhuman primate lung decellularization and recellularization using a specialized large-organ bioreactor. J Vis Exp, e50825

    Google Scholar 

  • Borg TK, Raso DS, Terracio L (1990) Potential role of the extracellular matrix in postseptation development of the heart. Ann N Y Acad Sci 588:87–92

    Google Scholar 

  • Boublik J, Park H, Radisic M, Tognana E, Chen F, Pei M, Vunjak-Novakovic G, Freed LE (2005) Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng 11:1122–1132

    Google Scholar 

  • Brutsaert DL (1987) Nonuniformity: a physiologic modulator of contraction and relaxation of the normal heart. J Am Coll Cardiol 9:341–348

    Google Scholar 

  • Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, Vunjak-Novakovic G, Freed LE (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 277:H433–H444

    Google Scholar 

  • Caimi PF, Reese J, Lee Z, Lazarus HM (2010) Emerging therapeutic approaches for multipotent mesenchymal stromal cells. Curr Opin Hematol 17:505–513

    Google Scholar 

  • Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:I132–I137

    Google Scholar 

  • Chanda D, Kumar S, Ponnazhagan S (2010) Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton. J Cell Biochem 111:249–257

    Google Scholar 

  • Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:7504

    Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243

    Google Scholar 

  • Curtis LH, Whellan DJ, Hammill BG, Hernandez AF, Anstrom KJ, Shea AM, Schulman KA (2008) Incidence and prevalence of heart failure in elderly persons, 1994-2003. Arch Intern Med 168:418–424

    Google Scholar 

  • De Castro Bras LE, Ramirez TA, Deleon-Pennell KY, Chiao YA, Ma Y, Dai Q, Halade GV, Hakala K, Weintraub ST, Lindsey ML (2013) Texas 3-step decellularization protocol: looking at the cardiac extracellular matrix. J Proteomics 86:43–52

    Google Scholar 

  • Domian IJ, Chiravuri M, Van Der Meer P, Feinberg AW, Shi X, Shao Y, WU SM, Parker KK, Chien KR (2009) Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326:426–429

    Google Scholar 

  • Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10:1836–1846

    Google Scholar 

  • Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J (2013) The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant 32:157–187

    Google Scholar 

  • Fink C, Ergun S, Kralisch D, Remmers U, Weil J, Eschenhagen T (2000) Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 14:669–679

    Google Scholar 

  • Galende E, Karakikes I, Edelmann L, Desnick RJ, Kerenyi T, Khoueiry G, Lafferty J, Mcginn JT, Brodman M, Fuster V, Hajjar RJ, Polgar K (2010) Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram 12:117–125

    Google Scholar 

  • Gerdisch MW, Shea RJ, Barron MD (2014) Clinical experience with CorMatrix extracellular matrix in the surgical treatment of mitral valve disease. J Thorac Cardiovasc Surg 148:1370–1378

    Google Scholar 

  • Gillies AR, Smith LR, Lieber RL, Varghese S (2011) Method for decellularizing skeletal muscle without detergents or proteolytic enzymes. Tissue Eng Part C Methods 17:383–389

    Google Scholar 

  • Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, Balasubramani M, Johnson SA, Sicari BM, Kollar E, Badylak SF, Banerjee I (2013) Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 34:6760–6772

    Google Scholar 

  • Govoni M, Muscari C, Guarnieri C, Giordano E (2013) Mechanostimulation protocols for cardiac tissue engineering. Biomed Res Int 2013:918640

    Google Scholar 

  • Hoque ME, Chuan YL, Pashby I (2012) Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers 97:83–93

    Google Scholar 

  • Hulsmann J, Aubin H, Kranz A, Godehardt E, Munakata H, Kamiya H, Barth M, Lichtenberg A, Akhyari P (2013) A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation. J Artif Organs 16:294–304

    Google Scholar 

  • Hulsmann J, Grun K, El Amouri S, Barth M, Hornung K, Holzfuss C, Lichtenberg A, Akhyari P (2012) Transplantation material bovine pericardium: biomechanical and immunogenic characteristics after decellularization vs. glutaraldehyde-fixing. Xenotransplantation 19:286–297

    Google Scholar 

  • Huu AL, Prakash S, Shum-Tim D (2012) Cellular cardiomyoplasty: current state of the field. Regen Med 7:571–582

    Google Scholar 

  • Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW (2009) 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119:1977–2016

    Google Scholar 

  • Kajbafzadeh AM, Javan-Farazmand N, Monajemzadeh M, Baghayee A (2013) Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue. Tissue Eng Part C Methods 19:642–651

    Google Scholar 

  • Kamkin A, Kiseleva I, Lozinsky I, Wagner KD, Isenberg G, Scholz H (2005) The role of mechanosensitive fibroblasts in the heart. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues. Academia, Moscow

    Google Scholar 

  • Kensah G, Gruh I, Viering J, Schumann H, Dahlmann J, Meyer H, Skvorc D, Bar A, Akhyari P, Heisterkamp A, Haverich A, Martin U (2011) A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Eng Part C Methods 17:463–473

    Google Scholar 

  • Kirklin JK, Naftel DC, Myers SL, Clark ML, Collum SC, Hollifield K, Cantor RS (2013). Quarterly Statistical Report 2013 4th Quarter Implant and event dates: June 23, 2006 to December 31, 2013 [Online]. Available: www.uab.edu/medicine/intermacs/

  • Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, Timothy Baldwin J, Young JB (2013b) Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant 32:141–156

    Google Scholar 

  • Konertz W, Angeli E, Tarusinov G, Christ T, Kroll J, Dohmen PM, Krogmann O, Franzbach B, Pace Napoleone C, Gargiulo G (2011) Right ventricular outflow tract reconstruction with decellularized porcine xenografts in patients with congenital heart disease. J Heart Valve Dis 20:341–347

    Google Scholar 

  • Koval CE, Rakita R (2013) Ventricular assist device related infections and solid organ transplantation. Am J Transplant 13(Suppl 4):348–354

    Google Scholar 

  • Krawiec JT, Vorp DA (2012) Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials 33:3388–3400

    Google Scholar 

  • L’heureux N, Mcallister TN, De La Fuente LM (2007) Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med 357:1451–1453

    Google Scholar 

  • Lee AY, Mahler N, Best C, Lee YU, Breuer CK (2014) Regenerative implants for cardiovascular tissue engineering. Transl Res 163:321–341

    Google Scholar 

  • Lees JG, Lim SA, Croll T, Williams G, Lui S, Cooper-White J, Mcquade LR, Mathiyalagan B, Tuch BE (2007) Transplantation of 3D scaffolds seeded with human embryonic stem cells: biological features of surrogate tissue and teratoma-forming potential. Regen Med 2:289–300

    Google Scholar 

  • Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347:1397–1402

    Google Scholar 

  • Li Y, Pan H, Huard J (2010) Isolating stem cells from soft musculoskeletal tissues. J Vis Exp (41). pii: 2011

    Google Scholar 

  • Lim SY, Hernandez D, Dusting GJ (2013) Growing vascularized heart tissue from stem cells. J Cardiovasc Pharmacol 62:122–129

    Google Scholar 

  • Lockhart M, Wirrig E, Phelps A, Wessels A (2011) Extracellular matrix and heart development. Birth Defects Res A Clin Mol Teratol 91:535–550

    Google Scholar 

  • Lokmic Z, Mitchell GM (2008) Engineering the microcirculation. Tissue Eng Part B Rev 14:87–103

    Google Scholar 

  • Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 4:2307

    Google Scholar 

  • Lund LH, Edwards LB, Kucheryavaya AY, Dipchand AI, Benden C, Christie JD, Dobbels F, Kirk R, Rahmel AO, Yusen RD, Stehlik J (2013) The Registry of the International Society for Heart and Lung Transplantation: thirtieth official adult heart transplant report–2013; focus theme: age. J Heart Lung Transplant 32:951–964

    Google Scholar 

  • Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030

    Google Scholar 

  • Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager K, Konofagou E, Vunjak-Novakovic G (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6:e12–e23

    Google Scholar 

  • Mcallister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A, Zagalski K, Fiorillo A, Avila H, Manglano X, Antonelli J, Kocher A, Zembala M, Cierpka L, De La Fuente LM, L’heureux N (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446

    Google Scholar 

  • Mehra MR, Kobashigawa J, Starling R, Russell S, Uber PA, Parameshwar J, Mohacsi P, Augustine S, Aaronson K, Barr M (2006) Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates–2006. J Heart Lung Transplant 25:1024–1042

    Google Scholar 

  • Menasche P (2007) Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis 50:7–17

    Google Scholar 

  • Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S, Kadota S, Morone N, Barve M, Asai Y, Tenkova-Heuser T, Heuser JE, Uesugi M, Aiba K, Nakatsuji N (2012) A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep 2:1448–1460

    Google Scholar 

  • Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174

    Google Scholar 

  • Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, Ogawa D, Ikeda E, Okano H, Yamanaka S (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743–745

    Google Scholar 

  • Morgan JP, Delnero PF, Zheng Y, Verbridge SS, Chen J, Craven M, Choi NW, Diaz-Santana A, Kermani P, Hempstead B, Lopez JA, Corso TN, Fischbach C, Stroock AD (2013) Formation of microvascular networks in vitro. Nat Protoc 8:1820–1836

    Google Scholar 

  • Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47:1777–1785

    Google Scholar 

  • Nag AC, Zak R (1979) Dissociation of adult mammalian heart into single cell suspension: an ultrastructural study. J Anat 129:541–559

    Google Scholar 

  • Neef K, Choi YH, Perumal Srinivasan S, Treskes P, Cowan DB, Stamm C, Rubach M, Adelmann R, Wittwer T, Wahlers T (2012) Mechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cells to myocardium. J Thorac Cardiovasc Surg 144:1176–1184.e1

    Google Scholar 

  • Nesselmann C, Li W, Ma N, Steinhoff G (2010) Stem cell-mediated neovascularization in heart repair. Ther Adv Cardiovasc Dis 4:27–42

    Google Scholar 

  • Niezgoda JA, Van Gils CC, Frykberg RG, Hodde JP (2005) Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers. Adv Skin Wound Care 18:258–266

    Google Scholar 

  • Nomi M, Miyake H, Sugita Y, Fujisawa M, Soker S (2006) Role of growth factors and endothelial cells in therapeutic angiogenesis and tissue engineering. Curr Stem Cell Res Ther 1:333–343

    Google Scholar 

  • Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    Google Scholar 

  • Oberwallner B, Brodarac A, Choi YH, Saric T, Anic P, Morawietz L, Stamm C (2014) Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J Biomed Mater Res A 102:3263–3272

    Google Scholar 

  • Obokata H, Kojima K, Westerman K, Yamato M, Okano T, Tsuneda S, Vacanti CA (2011) The potential of stem cells in adult tissues representative of the three germ layers. Tissue Eng Part A 17:607–615

    Google Scholar 

  • Orlando G, Booth C, Wang Z, Totonelli G, Ross CL, Moran E, Salvatori M, Maghsoudlou P, Turmaine M, Delario G, Al-Shraideh Y, Farooq U, Farney AC, Rogers J, Iskandar SS, Burns A, Marini FC, De Coppi P, Stratta RJ, Soker S (2013) Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34:5915–5925

    Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Google Scholar 

  • Parker MW, Rossi D, Peterson M, Smith K, Sikstrom K, White ES, Connett JE, Henke CA, Larsson O, Bitterman PB (2014) Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest 124:1622–1635

    Google Scholar 

  • Patil PB, Chougule PB, Kumar VK, Almstrom S, Backdahl H, Banerjee D, Herlenius G, Olausson M, Sumitran-Holgersson S (2013) Recellularization of acellular human small intestine using bone marrow stem cells. Stem Cells Transl Med 2:307–315

    Google Scholar 

  • Radisic M, Malda J, Epping E, Geng W, Langer R, Vunjak-Novakovic G (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93:332–343

    Google Scholar 

  • Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3:719–738

    Google Scholar 

  • Ramkisoensing AA, De Vries AA, Atsma DE, Schalij MJ, Pijnappels DA (2014) Interaction between myofibroblasts and stem cells in the fibrotic heart: balancing between deterioration and regeneration. Cardiovasc Res 102:224–231

    Google Scholar 

  • Reinecke H, Poppa V, Murry CE (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34:241–249

    Google Scholar 

  • Remlinger NT, Wearden PD, Gilbert TW (2012) Procedure for decellularization of porcine heart by retrograde coronary perfusion. J Vis Exp, e50059

    Google Scholar 

  • Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor DA (2014) Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One 9:e90406

    Google Scholar 

  • Roger VL (2013) Epidemiology of heart failure. Circ Res 113:646–659

    Google Scholar 

  • Roger VL, Weston SA, Redfield MM, Hellermann-Homan JP, Killian J, Yawn BP, Jacobsen SJ (2004) Trends in heart failure incidence and survival in a community-based population. JAMA 292:344–350

    Google Scholar 

  • Sarig U, Au-Yeung GC, Wang Y, Bronshtein T, Dahan N, Boey FY, Venkatraman SS, Machluf M (2012) Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng Part A 18:2125–2137

    Google Scholar 

  • Schiele NR, Koppes RA, Chrisey DB, Corr DT (2013) Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly. Tissue Eng Part A 19:1223–1232

    Google Scholar 

  • Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M, Kobayashi E, Umezu M, Okano T (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4:1399

    Google Scholar 

  • Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23:1002–1006, discussion 1006

    Google Scholar 

  • Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19:646–651

    Google Scholar 

  • Song JJ, Kim SS, Liu Z, Madsen JC, Mathisen DJ, Vacanti JP, Ott HC (2011) Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg 92:998–1005, discussion 1005–6

    Google Scholar 

  • Song JJ, Ott HC (2011) Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 17:424–432

    Google Scholar 

  • Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83:15–26

    Google Scholar 

  • Soto-Gutierrez A, Wertheim JA, Ott HC, Gilbert TW (2012) Perspectives on whole-organ assembly: moving toward transplantation on demand. J Clin Invest 122:3817–3823

    Google Scholar 

  • Stoker ME, Gerdes AM, May JF (1982) Regional differences in capillary density and myocyte size in the normal human heart. Anat Rec 202:187–191

    Google Scholar 

  • Stulak JM, Lee D, Haft JW, Romano MA, Cowger JA, Park SJ, Aaronson KD, Pagani FD (2014) Gastrointestinal bleeding and subsequent risk of thromboembolic events during support with a left ventricular assist device. J Heart Lung Transplant 33:60–64

    Google Scholar 

  • Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, Yoo JJ (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33:7756–7764

    Google Scholar 

  • Suzuki K, Brand NJ, Allen S, Khan MA, Farrell AO, Murtuza B, Oakley RE, Yacoub MH (2001) Overexpression of connexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 122:759–766

    Google Scholar 

  • Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4:155–173

    Google Scholar 

  • Torella D, Ellison GM, Karakikes I, Nadal-Ginard B (2007) Resident cardiac stem cells. Cell Mol Life Sci 64:661–673

    Google Scholar 

  • Toyoda Y, Guy TS, Kashem A (2013) Present status and future perspectives of heart transplantation. Circ J 77:1097–1110

    Google Scholar 

  • Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T, Mori H, Hanaoka J, Iwahashi S, Saito Y, Iwaguro H (2011) Human adipose-derived stem cells: potential clinical applications in surgery. Surg Today 41:18–23

    Google Scholar 

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820

    Google Scholar 

  • Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR (2011) Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng 13:245–267

    Google Scholar 

  • Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP, Radisic M (2010) Challenges in cardiac tissue engineering. Tissue Eng Part B Rev 16:169–187

    Google Scholar 

  • Wagner DE, Bonenfant NR, Sokocevic D, Desarno MJ, Borg ZD, Parsons CS, Brooks EM, Platz JJ, Khalpey ZI, Hoganson DM, Deng B, Lam YW, Oldinski RA, Ashikaga T, Weiss DJ (2014) Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials 35:2664–2679

    Google Scholar 

  • Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, Badylak SF (2010) Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 16:525–532

    Google Scholar 

  • Wang B, Wang G, To F, Butler JR, Claude A, Mclaughlin RM, Williams LN, De Jongh Curry AL, Liao J (2013) Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations. Langmuir 29:11109–11117

    Google Scholar 

  • Witzenburg C, Raghupathy R, Kren SM, Taylor DA, Barocas VH (2012) Mechanical changes in the rat right ventricle with decellularization. J Biomech 45:842–849

    Google Scholar 

  • Yi BA, Mummery CL, Chien KR (2013) Direct cardiomyocyte reprogramming: a new direction for cardiovascular regenerative medicine. Cold Spring Harb Perspect Med 3:a014050

    Google Scholar 

  • Zarrinkoub R, Wettermark B, Wandell P, Mejhert M, Szulkin R, Ljunggren G, Kahan T (2013) The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail 15:995–1002

    Google Scholar 

  • Zierer A, Melby SJ, Voeller RK, Guthrie TJ, Ewald GA, Shelton K, Pasque MK, Moon MR, Damiano RJ Jr, Moazami N (2007) Late-onset driveline infections: the Achilles’ heel of prolonged left ventricular assist device support. Ann Thorac Surg 84:515–520

    Google Scholar 

  • Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L (2009) Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120:1513–1523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Akhyari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aubin, H., Hülsmann, J., Pinto, A., Lichtenberg, A., Akhyari, P. (2015). Whole-Heart Tissue Engineering: Use of Three-Dimensional Matrix Scaffolds. In: Suuronen, E., Ruel, M. (eds) Biomaterials for Cardiac Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-10972-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10972-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10971-8

  • Online ISBN: 978-3-319-10972-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics