Skip to main content

Microenvironmental Control of Stem Cell Fate

  • Chapter
  • First Online:
Biomaterials for Cardiac Regeneration

Abstract

The field of regenerative medicine has witnessed impressive advances over the past 25–30 years, moving us ever closer to the goal of translating engineered tissue constructs into human patients. However, despite an exponentially expanding literature documenting advances in biomaterials and stem cell biology, generating tissues that function equivalently to the native tissues they are intended to replace remains an enormous challenge. Translating stem cell-based therapies from the bench to the bedside requires a better understanding of the mechanisms by which stem cell fate decisions are controlled. Extrinsic factors in the cellular microenvironment, particularly the extracellular matrix (ECM), include chemical, mechanical, and topographic cues, which in turn alter cell adhesion, cell shape, and cell migration, and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. This chapter focuses on the links between the ECM microenvironment and the control of cell fate. The concept of the stem cell niche is also highlighted, along with evidence that the proximity of stem cells to the microvasculature may be instructive. Finally, the impact of these findings for the design and clinical utility of biomaterials for cardiac regenerative medicine is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn EH, Kim Y, Kshitiz et al (2014) Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials 35:2401–2410

    Google Scholar 

  • Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22:863–866

    Google Scholar 

  • Andreu-Agullo C, Morante-Redolat JM, Delgado AC, Farinas I (2009) Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci 12:1514–1523

    Google Scholar 

  • Assmus B, Schachinger V, Teupe C et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017

    Google Scholar 

  • Beckermann BM, Kallifatidis G, Groth A et al (2008) VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 99:622–631

    Google Scholar 

  • Bernard A, Delamarche E, Schmid H et al (1998) Printing patterns of proteins. Langmuir 14:2225–2229

    Google Scholar 

  • Biela SA, Su Y, Spatz JP, Kemkemer R (2009) Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta Biomater 5:2460–2466

    Google Scholar 

  • Blocki A, Wang Y, Koch M et al (2013) Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem Cells Dev 22:2347–2355

    Google Scholar 

  • Brammer KS, Oh S, Gallagher JO, Jin S (2008) Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett 8:786–793

    Google Scholar 

  • Brockes JR, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 3:566–574

    Google Scholar 

  • Butler JM, Kobayashi H, Rafii S (2010a) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10:138–146

    Google Scholar 

  • Butler JM, Nolan DJ, Vertes EL et al (2010b) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6:251–264

    Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Google Scholar 

  • Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230

    Google Scholar 

  • Carreira BP, Morte MI, Inacio A et al (2010) Nitric oxide stimulates the proliferation of neural stem cells bypassing the epidermal growth factor receptor. Stem Cells 28:1219–1230

    Google Scholar 

  • Carrion B, Kong YP, Kaigler D, Putnam AJ (2013) Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their alpha6beta1 integrin receptor. Exp Cell Res 319:2964–2976

    Google Scholar 

  • Charest JL, Eliason MT, Garcia AJ, King WP (2006) Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates. Biomaterials 27:2487–2494

    Google Scholar 

  • Chen W, Villa-Diaz LG, Sun Y et al (2012) Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 6:4094–4103

    Google Scholar 

  • Chien KR (2004) Stem cells: lost in translation. Nature 428:607–608

    Google Scholar 

  • Choi J, Costa ML, Mermelstein CS et al (1990) MyoD converts primary dermal fibroblasts, chondroblasts, smooth-muscle, and retinal pigmented epithelial-cells into striated mononucleated myoblasts and mutinucleated myotubes. Proc Natl Acad Sci U S A 87:7988–7992

    Google Scholar 

  • Choi SJ, Kim HN, Bae WG, Suh KY (2011) Modulus- and surface energy-tunable ultraviolet-curable polyurethane acrylate: properties and applications. J Mater Chem 21:14325–14335

    Google Scholar 

  • Choi SJ, Yoo PJ, Baek SJ, Kim TW, Lee HH (2004) An ultraviolet-curable mold for sub-100-nm lithography. J Am Chem Soc 126:7744–7745

    Google Scholar 

  • Chong JJ, Yang X, Don CW et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277

    Google Scholar 

  • Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Google Scholar 

  • Curtis ASG, Casey B, Gallagher JO et al (2001) Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys Chem 94:275–283

    Google Scholar 

  • Da Silva Meirelles L, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–427

    Google Scholar 

  • Dalby MJ, Gadegaard N, Tare R et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003

    Google Scholar 

  • Dalby MJ, Mccloy D, Robertson M et al (2006a) Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27:2980–2987

    Google Scholar 

  • Dalby MJ, Mccloy D, Robertson M, Wilkinson CD, Oreffo RO (2006b) Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 27:1306–1315

    Google Scholar 

  • Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis AS (2002a) In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 23:2945–2954

    Google Scholar 

  • Dalby MJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS (2002b) Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. Tissue Eng 8:1099–1108

    Google Scholar 

  • Dalby MJ, Yarwood SJ, Riehle MO et al (2002c) Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 276:1–9

    Google Scholar 

  • Dewitt ND, Trounson A (2012) Direct conversion in the heart: a simple twist of fate. EMBO J 31:2244–2246

    Google Scholar 

  • Diehl KA, Foley JD, Nealey PF, Murphy CJ (2005) Nanoscale topography modulates corneal epithelial cell migration. J Biomed Mater Res A 75:603–611

    Google Scholar 

  • Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    Google Scholar 

  • Dingal PC, Discher DE (2014) Combining insoluble and soluble factors to steer stem cell fate. Nat Mater 13:532–537

    Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Google Scholar 

  • Doorn J, Moll G, Le Blanc K, Van Blitterswijk C, De Boer J (2011) Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev 18:101–115

    Google Scholar 

  • Doyle AD, Wang FW, Matsumoto K, Yamada KM (2009) One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol 184:481–490

    Google Scholar 

  • Efe JA, Hilcove S, Kim J et al (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13:215–222

    Google Scholar 

  • Engler AJ, Carag-Krieger C, Johnson CP et al (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802

    Google Scholar 

  • Engler AJ, Griffin MA, Sen S et al (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887

    Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Google Scholar 

  • Ferreira LS, Gerecht S, Fuller J et al (2007) Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28:2706–2717

    Google Scholar 

  • Ghajar CM, Chen X, Harris JW et al (2008) The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys J 94:1930–1941

    Google Scholar 

  • Goldman SA, Chen Z (2011) Perivascular instruction of cell genesis and fate in the adult brain. Nat Neurosci 14:1382–1389

    Google Scholar 

  • Gurdon JB, Uehlinger V (1966) “Fertile” intestine nuclei. Nature 210:1240–1241

    Google Scholar 

  • Hadland BK, Huppert SS, Kanungo J et al (2004) A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104:3097–3105

    Google Scholar 

  • Huang XD, Bao LR, Cheng X et al (2002) Reversal imprinting by transferring polymer from mold to substrate. J Vac Sci Technol B 20:2872–2876

    Google Scholar 

  • Huebsch N, Arany PR, Mao AS et al (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9:518–526

    Google Scholar 

  • Hwang NS, Varghese S, Elisseeff J (2008) Controlled differentiation of stem cells. Adv Drug Deliv Rev 60:199–214

    Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Google Scholar 

  • Jacot JG, Mcculloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95:3479–3487

    Google Scholar 

  • Jain R, Von Recum AF (2003) Effect of titanium surface texture on the cell-biomaterial interface. J Investig Surg 16:263–273

    Google Scholar 

  • Janson IA, Kong YP, Putnam AJ (2014) Nanotopographic substrates of poly(Methyl Methacrylate) do not strongly influence the osteogenic phenotype of mesenchymal stem cells in vitro. PLoS One 9:e90719

    Google Scholar 

  • Jopling C, Sleep E, Raya M et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–U168

    Google Scholar 

  • Kaigler D, Krebsbach PH, West ER et al (2005) Endothelial cell modulation of bone marrow stromal cell osteogenic potential. FASEB J 19:665

    Google Scholar 

  • Kajstura J, Rota M, Whang B et al (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96:127–137

    Google Scholar 

  • Karuri NW, Liliensiek S, Teixeira AI et al (2004) Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J Cell Sci 117:3153–3164

    Google Scholar 

  • Khatiwala CB, Peyton SR, Metzke M, Putnam AJ (2007) The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation. J Cell Physiol 211:661–672

    Google Scholar 

  • Khatiwala CB, Peyton SR, Putnam AJ (2006) Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am J Physiol Cell Physiol 290:C1640–C1650

    Google Scholar 

  • Khetan S, Guvendiren M, Legant WR et al (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12:458–465

    Google Scholar 

  • Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301

    Google Scholar 

  • Kikuchi K, Holdway JE, Werdich AA et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–U162

    Google Scholar 

  • Kim DH, Han K, Gupta K et al (2009) Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30:5433–5444

    Google Scholar 

  • Kim DH, Lipke EA, Kim P et al (2010) Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci U S A 107:565–570

    Google Scholar 

  • Kim DH, Provenzano PP, Smith CL, Levchenko A (2012) Matrix nanotopography as a regulator of cell function. J Cell Biol 197:351–360

    Google Scholar 

  • Kim J, Kim HN, Lim KT et al (2013) Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials 34:7257–7268

    MathSciNet  Google Scholar 

  • Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Google Scholar 

  • Kokovay E, Li L, Cunningham LA (2005) Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab 26:545–555

    Google Scholar 

  • Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204

    Google Scholar 

  • Kong YP, Carrion B, Singh RK, Putnam AJ (2013a) Matrix identity and tractional forces influence indirect cardiac reprogramming. Sci Rep 3:3474

    Google Scholar 

  • Kong YP, Tu CH, Donovan PJ, Yee AF (2013b) Expression of Oct4 in human embryonic stem cells is dependent on nanotopographical configuration. Acta Biomater 9:6369–6380

    Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335

    Google Scholar 

  • Lamers E, Walboomers XF, Domanski M et al (2010) The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials 31:3307–3316

    Google Scholar 

  • Lapointe VL, Fernandes AT, Bell NC, Stellacci F, Stevens MM (2013) Nanoscale topography and chemistry affect embryonic stem cell self-renewal and early differentiation. Adv Healthc Mater 2:1644–1650

    Google Scholar 

  • Lepilina A, Coon AN, Kikuchi K et al (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:607–619

    Google Scholar 

  • Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA (1999) Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 13:450–464

    Google Scholar 

  • Limbourg FP, Drexler H (2005) Bone marrow stem cells for myocardial infarction: effector or mediator? Circ Res 96:6–8

    Google Scholar 

  • Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Google Scholar 

  • Lu D, Luo C, Zhang C, Li Z, Long M (2014) Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials 35:3945–3955

    Google Scholar 

  • Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441

    Google Scholar 

  • Mathieu C, Sii-Felice K, Fouchet P et al (2008) Endothelial cell-derived bone morphogenetic proteins control proliferation of neural stem/progenitor cells. Mol Cell Neurosci 38:569–577

    Google Scholar 

  • Mcbeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Google Scholar 

  • Mcmurray RJ, Gadegaard N, Tsimbouri PM et al (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10:637–644

    Google Scholar 

  • Mello AP, Volkov Y, Kelleher D, Prendergast PJ (2003) Comparative locomotory behavior of T lymphocytes versus T lymphoma cells on flat and grooved surfaces. Ann Biomed Eng 31:1106–1113

    Google Scholar 

  • Mrksich M, Chen CS, Xia YN et al (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc Natl Acad Sci U S A 93:10775–10778

    Google Scholar 

  • Murry CE, Kay MA, Bartosek T, Hauschka SD, Schwartz SM (1996) Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest 98:2209–2217

    Google Scholar 

  • Nagaya N, Fujii T, Iwase T et al (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287:H2670–H2676

    Google Scholar 

  • Nagaya N, Kangawa K, Itoh T et al (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135

    Google Scholar 

  • Oh S, Brammer KS, Li YS et al (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A 106:2130–2135

    Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Google Scholar 

  • Packer MA, Stasiv Y, Benraiss A et al (2003) Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A 100:9566–9571

    Google Scholar 

  • Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94:13661–13665

    Google Scholar 

  • Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204:198–209

    Google Scholar 

  • Peyton SR, Raub CB, Keschrumrus VP, Putnam AJ (2006) The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27:4881–4893

    Google Scholar 

  • Pompe T, Glorius S, Bischoff T et al (2009) Dissecting the impact of matrix anchorage and elasticity in cell adhesion. Biophys J 97:2154–2163

    Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    Google Scholar 

  • Poulos MG, Guo P, Kofler NM et al (2013) Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 4:1022–1034

    Google Scholar 

  • Qian L, Huang Y, Spencer CI et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    Google Scholar 

  • Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C et al (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9:331–339

    Google Scholar 

  • Ranucci CS, Moghe PV (2001) Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density. J Biomed Mater Res 54:149–161

    Google Scholar 

  • Ross AM, Jiang ZX, Bastmeyer M, Lahann J (2012) Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small 8:336–355

    Google Scholar 

  • Saha K, Keung AJ, Irwin EF et al (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–4438

    Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    Google Scholar 

  • Shen Q, Goderie SK, Jin L et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    Google Scholar 

  • Shen Q, Wang Y, Kokovay E et al (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300

    Google Scholar 

  • Silva GV, Litovsky S, Assad JA et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Google Scholar 

  • Song K, Nam YJ, Luo X et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604

    Google Scholar 

  • Stevens KR, Kreutziger KL, Dupras SK et al (2009) Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A 106:16568–16573

    Google Scholar 

  • Suh KY, Park MC, Kim P (2009) Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv Funct Mater 19:2699–2712

    Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Google Scholar 

  • Tan J, Saltzman WM (2002) Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials 23:3215–3225

    Google Scholar 

  • Tanaka EM (2003) Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev 13:497–501

    Google Scholar 

  • Tavazoie M, Van Der Veken L, Silva-Vargas V et al (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288

    Google Scholar 

  • Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF (2003) Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 116:1881–1892

    Google Scholar 

  • Teixeira AI, Nealey PF, Murphy CJ (2004) Responses of human keratocytes to micro- and nanostructured substrates. J Biomed Mater Res A 71:369–376

    Google Scholar 

  • Trappmann B, Gautrot JE, Connelly JT et al (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649

    Google Scholar 

  • Unadkat HV, Hulsman M, Cornelissen K et al (2011) An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci U S A 108:16565–16570

    Google Scholar 

  • Vazin T, Schaffer DV (2009) Engineering strategies to emulate the stem cell niche. Trends Biotechnol 28:117

    Google Scholar 

  • Vazin T, Schaffer DV (2010) Engineering strategies to emulate the stem cell niche. Trends Biotechnol 28:117–124

    Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Google Scholar 

  • Vunjak-Novakovic G, Tandon N, Godier A et al (2010) Challenges in cardiac tissue engineering. Tissue Eng B Rev 16:169–187

    Google Scholar 

  • Watari S, Hayashi K, Wood JA et al (2012) Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves. Biomaterials 33:128–136

    Google Scholar 

  • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810

    Google Scholar 

  • Winkler IG, Barbier V, Nowlan B et al (2012) Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 18:1651–1657

    Google Scholar 

  • Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913

    Google Scholar 

  • Xie HF, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676

    Google Scholar 

  • Xu H, Yi BA, Chien KR (2011) Shortcuts to making cardiomyocytes. Nat Cell Biol 13:191–193

    Google Scholar 

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    Google Scholar 

  • Yim EK, Reano RM, Pang SW et al (2005) Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26:5405–5413

    Google Scholar 

  • You MH, Kwak MK, Kim DH et al (2010) Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 11:1856–1862

    Google Scholar 

  • Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–U30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Putnam Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Putnam, A.J. (2015). Microenvironmental Control of Stem Cell Fate. In: Suuronen, E., Ruel, M. (eds) Biomaterials for Cardiac Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-10972-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10972-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10971-8

  • Online ISBN: 978-3-319-10972-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics