Abbasalizadeh S, Baharvand H (2013) Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 31:1600–1623. doi:10.1016/j.biotechadv.2013.08.009
CrossRef
Google Scholar
Abraham MR, Henrikson CA, Tung L et al (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 97:159–167. doi:10.1161/01.RES.0000174794.22491.a0
CrossRef
Google Scholar
Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277. doi:10.1038/nrc3034
CrossRef
Google Scholar
Blin G, Nury D, Stefanovic S et al (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120:1125–1139. doi:10.1172/JCI40120
CrossRef
Google Scholar
Chong JJH, Yang X, Don CW et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277. doi:10.1038/nature13233
CrossRef
Google Scholar
Cunningham JJ, Ulbright TM, Pera MF, Looijenga LHJ (2012) Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol 30:848–856. doi:10.1038/nbt.2329
CrossRef
Google Scholar
Fischer SA, Brunskill SJ, Doree C et al (2014) Stem cell therapy for chronic ischaemic heart disease and congestive heart failure (review). The Cochrane Collaboration: 1–170
Google Scholar
Fukushima S, Varela-Carver A, Coppen SR et al (2007) Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation 115:2254–2261. doi:10.1161/CIRCULATIONAHA.106.662577
CrossRef
Google Scholar
Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12:689–698. doi:10.1016/j.stem.2013.05.008
CrossRef
Google Scholar
Gutierrez-Aranda I, Ramos-Mejia V, Bueno C et al (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28:1568–1570. doi:10.1002/stem.471
CrossRef
Google Scholar
Hatzistergos KE, Blum A, Ince TA et al (2011) What is the oncologic risk of stem cell treatment for heart disease? Circ Res 108:1300–1303. doi:10.1161/CIRCRESAHA.111.246611
CrossRef
Google Scholar
Hyun I, Hochedlinger K, Jaenisch R, Yamanaka S (2007) New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 1:367–368. doi:10.1016/j.stem.2007.09.006
CrossRef
Google Scholar
Jansen of Lorkeers SJ, Hart E, Tang XL et al (2014) Cyclosporin in cell therapy for cardiac regeneration. J Cardiovasc Trans Res 7(5):475–482. doi:10.1007/s12265-014-9570-8
CrossRef
Google Scholar
Jung J, Hackett NR, Pergolizzi RG et al (2007) Ablation of tumor-derived stem cells transplanted to the central nervous system by genetic modification of embryonic stem cells with a suicide gene. Hum Gene Ther 18:1182–1192. doi:10.1089/hum.2007.078
CrossRef
Google Scholar
Kuroda T, Yasuda S, Sato Y (2012) Tumorigenicity studies for human pluripotent stem cell-derived products. Biol Pharm Bull 36(2):189–192
CrossRef
Google Scholar
Lee AS, Tang C, Rao MS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004. doi:10.1038/nm.3267
CrossRef
Google Scholar
Liu Y, Tse H-F (2011) The proarrhythmic risk of cell therapy for cardiovascular diseases. Expert Rev Cardiovasc Ther 9:1593–1601. doi:10.1586/erc.11.171
CrossRef
Google Scholar
Matsumura G, Isayama N, Matsuda S et al (2013) Long-term results of cell-free biodegradable scaffolds for in situ tissue engineering of pulmonary artery in a canine model. Biomaterials 34:6422–6428. doi:10.1016/j.biomaterials.2013.05.037
CrossRef
Google Scholar
Menasche P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200. doi:10.1161/CIRCULATIONAHA.107.734103
CrossRef
Google Scholar
Menasche P, Vanneaux V, Fabreguettes JR et al (2014) Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J. doi:10.1093/eurheartj/ehu192
Google Scholar
Prokhorova TA, Harkness LM, Frandsen U et al (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of matrigel. Stem Cells Dev 18:47–54. doi:10.1089/scd.2007.0266
CrossRef
Google Scholar
Shiba Y, Filice D, Fernandes S et al (2014) Electrical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig chronic infarct model. J Cardiovasc Pharmacol Ther. doi:10.1177/1074248413520344
Google Scholar
Sicari BM, Rubin JP, Dearth CL et al (2014) An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 6(234):234ra58. doi:10.1126/scitranslmed.3008085
CrossRef
Google Scholar
Smith AJ, Nelson NG, Oommen S et al (2012) Apoptotic susceptibility to DNA damage of pluripotent stem cells facilitates pharmacologic purging of teratoma risk. Stem Cells Transl Med 1:709–718
CrossRef
Google Scholar
Tan HL, Fong WJ, Lee EH et al (2009) mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 27:1792–1801. doi:10.1002/stem.109
CrossRef
Google Scholar
Tang C, Lee AS, Volkmer J-P et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834. doi:10.1038/nbt.1947
CrossRef
Google Scholar
Terajima Y, Shimizu T, Tsuruyama S et al (2014) Autologous skeletal myoblast sheet therapy for porcine myocardial infarction without increasing risk of arrhythmia. Cell Med 6:99–109. doi:10.3727/215517913X672254
CrossRef
Google Scholar
Tohyama S, Hattori F, Sano M et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137. doi:10.1016/j.stem.2012.09.013
CrossRef
Google Scholar
van der Worp HB, Howells DW, Sena ES et al (2010) Can animal models of disease reliably inform human studies? PLoS Med 7:e1000245. doi:10.1371/journal.pmed.1000245
CrossRef
Google Scholar
Wang Y-C, Nakagawa M, Garitaonandia I et al (2011) Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Res 21:1551–1563. doi:10.1038/cr.2011.148
CrossRef
Google Scholar
Wöhrle J, Merkle N, Mailänder V et al (2010) Results of intracoronary stem cell therapy after acute myocardial infarction. Am J Cardiol 105:804–812
CrossRef
Google Scholar
Yoon YS, Park JS, Tkebuchava T et al (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109:3154–3157. doi:10.1161/01.CIR.0000134696.08436.65
CrossRef
Google Scholar