Skip to main content

Safety, Regulatory, and Ethical Issues of Human Studies

Abstract

To get approval for initiating a stem cell clinical trial is becoming increasingly difficult because of the stringency of regulatory guidelines. The first section of this chapter presents an outline of the major issues which should be kept in mind by investigators from the very early onset of the program so as to frame it in such a way that it may satisfactorily comply with the multiple constraints, thereby avoiding a waste of time, efforts, and money. While the regulators legitimately require proof of efficacy of the stem cell product and mechanistic insights before granting approval for a human study, their main concern still pertains to safety, particularly for first-in-man interventions. The next section of this chapter briefly summarizes the main cell-related complications that have happened or remain of concern, and which need to be addressed by a risk plan analysis. Finally, stem cells pose unique ethical problems, particularly when one is dealing with human pluripotent stem cells and some general considerations surrounding this ethical debate are presented in the last part of the chapter.

Keywords

  • Pluripotent Stem Cell
  • Embryonic Stem Cell Research
  • Human Pluripotent Stem Cell
  • Advance Therapy Medicinal Product
  • Stem Cell Product

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10972-5_11
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-10972-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

References

  • Abbasalizadeh S, Baharvand H (2013) Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 31:1600–1623. doi:10.1016/j.biotechadv.2013.08.009

    CrossRef  Google Scholar 

  • Abraham MR, Henrikson CA, Tung L et al (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 97:159–167. doi:10.1161/01.RES.0000174794.22491.a0

    CrossRef  Google Scholar 

  • Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277. doi:10.1038/nrc3034

    CrossRef  Google Scholar 

  • Blin G, Nury D, Stefanovic S et al (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120:1125–1139. doi:10.1172/JCI40120

    CrossRef  Google Scholar 

  • Chong JJH, Yang X, Don CW et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277. doi:10.1038/nature13233

    CrossRef  Google Scholar 

  • Cunningham JJ, Ulbright TM, Pera MF, Looijenga LHJ (2012) Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol 30:848–856. doi:10.1038/nbt.2329

    CrossRef  Google Scholar 

  • Fischer SA, Brunskill SJ, Doree C et al (2014) Stem cell therapy for chronic ischaemic heart disease and congestive heart failure (review). The Cochrane Collaboration: 1–170

    Google Scholar 

  • Fukushima S, Varela-Carver A, Coppen SR et al (2007) Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation 115:2254–2261. doi:10.1161/CIRCULATIONAHA.106.662577

    CrossRef  Google Scholar 

  • Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12:689–698. doi:10.1016/j.stem.2013.05.008

    CrossRef  Google Scholar 

  • Gutierrez-Aranda I, Ramos-Mejia V, Bueno C et al (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28:1568–1570. doi:10.1002/stem.471

    CrossRef  Google Scholar 

  • Hatzistergos KE, Blum A, Ince TA et al (2011) What is the oncologic risk of stem cell treatment for heart disease? Circ Res 108:1300–1303. doi:10.1161/CIRCRESAHA.111.246611

    CrossRef  Google Scholar 

  • Hyun I, Hochedlinger K, Jaenisch R, Yamanaka S (2007) New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 1:367–368. doi:10.1016/j.stem.2007.09.006

    CrossRef  Google Scholar 

  • Jansen of Lorkeers SJ, Hart E, Tang XL et al (2014) Cyclosporin in cell therapy for cardiac regeneration. J Cardiovasc Trans Res 7(5):475–482. doi:10.1007/s12265-014-9570-8

    CrossRef  Google Scholar 

  • Jung J, Hackett NR, Pergolizzi RG et al (2007) Ablation of tumor-derived stem cells transplanted to the central nervous system by genetic modification of embryonic stem cells with a suicide gene. Hum Gene Ther 18:1182–1192. doi:10.1089/hum.2007.078

    CrossRef  Google Scholar 

  • Kuroda T, Yasuda S, Sato Y (2012) Tumorigenicity studies for human pluripotent stem cell-derived products. Biol Pharm Bull 36(2):189–192

    CrossRef  Google Scholar 

  • Lee AS, Tang C, Rao MS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004. doi:10.1038/nm.3267

    CrossRef  Google Scholar 

  • Liu Y, Tse H-F (2011) The proarrhythmic risk of cell therapy for cardiovascular diseases. Expert Rev Cardiovasc Ther 9:1593–1601. doi:10.1586/erc.11.171

    CrossRef  Google Scholar 

  • Matsumura G, Isayama N, Matsuda S et al (2013) Long-term results of cell-free biodegradable scaffolds for in situ tissue engineering of pulmonary artery in a canine model. Biomaterials 34:6422–6428. doi:10.1016/j.biomaterials.2013.05.037

    CrossRef  Google Scholar 

  • Menasche P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200. doi:10.1161/CIRCULATIONAHA.107.734103

    CrossRef  Google Scholar 

  • Menasche P, Vanneaux V, Fabreguettes JR et al (2014) Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J. doi:10.1093/eurheartj/ehu192

    Google Scholar 

  • Prokhorova TA, Harkness LM, Frandsen U et al (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of matrigel. Stem Cells Dev 18:47–54. doi:10.1089/scd.2007.0266

    CrossRef  Google Scholar 

  • Shiba Y, Filice D, Fernandes S et al (2014) Electrical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig chronic infarct model. J Cardiovasc Pharmacol Ther. doi:10.1177/1074248413520344

    Google Scholar 

  • Sicari BM, Rubin JP, Dearth CL et al (2014) An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 6(234):234ra58. doi:10.1126/scitranslmed.3008085

    CrossRef  Google Scholar 

  • Smith AJ, Nelson NG, Oommen S et al (2012) Apoptotic susceptibility to DNA damage of pluripotent stem cells facilitates pharmacologic purging of teratoma risk. Stem Cells Transl Med 1:709–718

    CrossRef  Google Scholar 

  • Tan HL, Fong WJ, Lee EH et al (2009) mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 27:1792–1801. doi:10.1002/stem.109

    CrossRef  Google Scholar 

  • Tang C, Lee AS, Volkmer J-P et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834. doi:10.1038/nbt.1947

    CrossRef  Google Scholar 

  • Terajima Y, Shimizu T, Tsuruyama S et al (2014) Autologous skeletal myoblast sheet therapy for porcine myocardial infarction without increasing risk of arrhythmia. Cell Med 6:99–109. doi:10.3727/215517913X672254

    CrossRef  Google Scholar 

  • Tohyama S, Hattori F, Sano M et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137. doi:10.1016/j.stem.2012.09.013

    CrossRef  Google Scholar 

  • van der Worp HB, Howells DW, Sena ES et al (2010) Can animal models of disease reliably inform human studies? PLoS Med 7:e1000245. doi:10.1371/journal.pmed.1000245

    CrossRef  Google Scholar 

  • Wang Y-C, Nakagawa M, Garitaonandia I et al (2011) Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Res 21:1551–1563. doi:10.1038/cr.2011.148

    CrossRef  Google Scholar 

  • Wöhrle J, Merkle N, Mailänder V et al (2010) Results of intracoronary stem cell therapy after acute myocardial infarction. Am J Cardiol 105:804–812

    CrossRef  Google Scholar 

  • Yoon YS, Park JS, Tkebuchava T et al (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109:3154–3157. doi:10.1161/01.CIR.0000134696.08436.65

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Menasché .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farouz, Y., Cossé, M., Renault, N., Menasché, P. (2015). Safety, Regulatory, and Ethical Issues of Human Studies. In: Suuronen, E., Ruel, M. (eds) Biomaterials for Cardiac Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-10972-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10972-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10971-8

  • Online ISBN: 978-3-319-10972-5

  • eBook Packages: EngineeringEngineering (R0)