Safety, Regulatory, and Ethical Issues of Human Studies

  • Yohan Farouz
  • Mathilde Cossé
  • Nisa Renault
  • Philippe Menasché
Chapter

Abstract

To get approval for initiating a stem cell clinical trial is becoming increasingly difficult because of the stringency of regulatory guidelines. The first section of this chapter presents an outline of the major issues which should be kept in mind by investigators from the very early onset of the program so as to frame it in such a way that it may satisfactorily comply with the multiple constraints, thereby avoiding a waste of time, efforts, and money. While the regulators legitimately require proof of efficacy of the stem cell product and mechanistic insights before granting approval for a human study, their main concern still pertains to safety, particularly for first-in-man interventions. The next section of this chapter briefly summarizes the main cell-related complications that have happened or remain of concern, and which need to be addressed by a risk plan analysis. Finally, stem cells pose unique ethical problems, particularly when one is dealing with human pluripotent stem cells and some general considerations surrounding this ethical debate are presented in the last part of the chapter.

References

  1. Abbasalizadeh S, Baharvand H (2013) Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 31:1600–1623. doi:10.1016/j.biotechadv.2013.08.009 CrossRefGoogle Scholar
  2. Abraham MR, Henrikson CA, Tung L et al (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 97:159–167. doi:10.1161/01.RES.0000174794.22491.a0 CrossRefGoogle Scholar
  3. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277. doi:10.1038/nrc3034 CrossRefGoogle Scholar
  4. Blin G, Nury D, Stefanovic S et al (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120:1125–1139. doi:10.1172/JCI40120 CrossRefGoogle Scholar
  5. Chong JJH, Yang X, Don CW et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277. doi:10.1038/nature13233 CrossRefGoogle Scholar
  6. Cunningham JJ, Ulbright TM, Pera MF, Looijenga LHJ (2012) Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol 30:848–856. doi:10.1038/nbt.2329 CrossRefGoogle Scholar
  7. Fischer SA, Brunskill SJ, Doree C et al (2014) Stem cell therapy for chronic ischaemic heart disease and congestive heart failure (review). The Cochrane Collaboration: 1–170Google Scholar
  8. Fukushima S, Varela-Carver A, Coppen SR et al (2007) Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation 115:2254–2261. doi:10.1161/CIRCULATIONAHA.106.662577 CrossRefGoogle Scholar
  9. Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12:689–698. doi:10.1016/j.stem.2013.05.008 CrossRefGoogle Scholar
  10. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C et al (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28:1568–1570. doi:10.1002/stem.471 CrossRefGoogle Scholar
  11. Hatzistergos KE, Blum A, Ince TA et al (2011) What is the oncologic risk of stem cell treatment for heart disease? Circ Res 108:1300–1303. doi:10.1161/CIRCRESAHA.111.246611 CrossRefGoogle Scholar
  12. Hyun I, Hochedlinger K, Jaenisch R, Yamanaka S (2007) New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 1:367–368. doi:10.1016/j.stem.2007.09.006 CrossRefGoogle Scholar
  13. Jansen of Lorkeers SJ, Hart E, Tang XL et al (2014) Cyclosporin in cell therapy for cardiac regeneration. J Cardiovasc Trans Res 7(5):475–482. doi:10.1007/s12265-014-9570-8 CrossRefGoogle Scholar
  14. Jung J, Hackett NR, Pergolizzi RG et al (2007) Ablation of tumor-derived stem cells transplanted to the central nervous system by genetic modification of embryonic stem cells with a suicide gene. Hum Gene Ther 18:1182–1192. doi:10.1089/hum.2007.078 CrossRefGoogle Scholar
  15. Kuroda T, Yasuda S, Sato Y (2012) Tumorigenicity studies for human pluripotent stem cell-derived products. Biol Pharm Bull 36(2):189–192CrossRefGoogle Scholar
  16. Lee AS, Tang C, Rao MS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004. doi:10.1038/nm.3267 CrossRefGoogle Scholar
  17. Liu Y, Tse H-F (2011) The proarrhythmic risk of cell therapy for cardiovascular diseases. Expert Rev Cardiovasc Ther 9:1593–1601. doi:10.1586/erc.11.171 CrossRefGoogle Scholar
  18. Matsumura G, Isayama N, Matsuda S et al (2013) Long-term results of cell-free biodegradable scaffolds for in situ tissue engineering of pulmonary artery in a canine model. Biomaterials 34:6422–6428. doi:10.1016/j.biomaterials.2013.05.037 CrossRefGoogle Scholar
  19. Menasche P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200. doi:10.1161/CIRCULATIONAHA.107.734103 CrossRefGoogle Scholar
  20. Menasche P, Vanneaux V, Fabreguettes JR et al (2014) Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J. doi:10.1093/eurheartj/ehu192Google Scholar
  21. Prokhorova TA, Harkness LM, Frandsen U et al (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of matrigel. Stem Cells Dev 18:47–54. doi:10.1089/scd.2007.0266 CrossRefGoogle Scholar
  22. Shiba Y, Filice D, Fernandes S et al (2014) Electrical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig chronic infarct model. J Cardiovasc Pharmacol Ther. doi:10.1177/1074248413520344 Google Scholar
  23. Sicari BM, Rubin JP, Dearth CL et al (2014) An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 6(234):234ra58. doi:10.1126/scitranslmed.3008085 CrossRefGoogle Scholar
  24. Smith AJ, Nelson NG, Oommen S et al (2012) Apoptotic susceptibility to DNA damage of pluripotent stem cells facilitates pharmacologic purging of teratoma risk. Stem Cells Transl Med 1:709–718CrossRefGoogle Scholar
  25. Tan HL, Fong WJ, Lee EH et al (2009) mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 27:1792–1801. doi:10.1002/stem.109 CrossRefGoogle Scholar
  26. Tang C, Lee AS, Volkmer J-P et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834. doi:10.1038/nbt.1947 CrossRefGoogle Scholar
  27. Terajima Y, Shimizu T, Tsuruyama S et al (2014) Autologous skeletal myoblast sheet therapy for porcine myocardial infarction without increasing risk of arrhythmia. Cell Med 6:99–109. doi:10.3727/215517913X672254 CrossRefGoogle Scholar
  28. Tohyama S, Hattori F, Sano M et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137. doi:10.1016/j.stem.2012.09.013 CrossRefGoogle Scholar
  29. van der Worp HB, Howells DW, Sena ES et al (2010) Can animal models of disease reliably inform human studies? PLoS Med 7:e1000245. doi:10.1371/journal.pmed.1000245 CrossRefGoogle Scholar
  30. Wang Y-C, Nakagawa M, Garitaonandia I et al (2011) Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Res 21:1551–1563. doi:10.1038/cr.2011.148 CrossRefGoogle Scholar
  31. Wöhrle J, Merkle N, Mailänder V et al (2010) Results of intracoronary stem cell therapy after acute myocardial infarction. Am J Cardiol 105:804–812CrossRefGoogle Scholar
  32. Yoon YS, Park JS, Tkebuchava T et al (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109:3154–3157. doi:10.1161/01.CIR.0000134696.08436.65 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yohan Farouz
    • 1
  • Mathilde Cossé
    • 1
  • Nisa Renault
    • 1
  • Philippe Menasché
    • 1
    • 2
  1. 1.Paris Descartes University, Sorbonne Paris Cité75015 ParisFrance
  2. 2.Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular SurgeryParis Descartes University, Sorbonne Paris CitéParisFrance

Personalised recommendations