Skip to main content

Phytoremediation and Necrophytoremediation of Petrogenic Hydrocarbon-Contaminated Soils

  • Chapter
  • First Online:
Phytoremediation

Abstract

While many human activities rely heavily on the use of petrogenic hydrocarbons, contamination of the environment by petrogenic hydrocarbons during extraction, refining, and transport of petroleum remains a global issue. The aim of this chapter is to assess the potential for phytoremediation (plant-assisted bioremediation) and necrophytoremediation (dead plant biomass-assisted bioremediation) for the remediation of hydrocarbon-contaminated soils. Phytoremediation is defined as the use of plants and their associated microorganisms to remove or degrade organic or inorganic contaminants. In terms of hydrocarbon degradation, microorganisms present in the plant rhizosphere (root zone) have been shown to be effective at remediating the contaminants; this is called rhizoremediation (rhizodegradation). Plant roots increase microbial activities (including hydrocarbon degrading activities) through the release of root exudates such as nutrients, oxygen, and hydrocarbon analogues, which may contribute to the acceleration of the degradation of petrogenic hydrocarbons. However, toxicity associated with many hydrocarbon products towards the plants coupled with undesirable soil conditions such as salinity may limit the effectiveness of phytoremediation (rhizoremediation). In this case, necrophytoremediation can be used as an alternative method; this is defined as the use of dead plant biomass (e.g. straw) and its associated microflora to degrade the contaminant. Necrophytoremediation is a toxic-independent process, one which is less affected by soil conditions unlike phytoremediation. In summary, both these technologies are promising tools which can be used to remediate hydrocarbon-contaminated soils as they are cost-effective, sustainable, and environmental friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam G, Duncan H (2002) Influence of diesel fuel on seed germination. Environ Pollut 120:363–370

    Article  CAS  PubMed  Google Scholar 

  • Adetutu EM, Ball AS, Weber J, Aleer S, Dandie CE, Juhasz AL (2012) Impact of bacterial and fungal processes on 14C-hexadecane mineralisation in weathered hydrocarbon contaminated soil. Sci Total Environ 414:585–591

    Article  CAS  PubMed  Google Scholar 

  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–287

    Article  CAS  PubMed  Google Scholar 

  • Aleer S, Adetutu EM, Makadia TH, Patil S, Ball AS (2011) Harnessing the hydrocarbon-degrading potential of contaminated soils for the bioremediation of waste engine oil. Water Air Soil Pollut 218:121–130

    Article  CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Banks M, Kulakow P, Schwab A, Chen Z, Rathbone K (2003) Degradation of crude oil in the rhizosphere of Sorghum bicolor. Int J Phytoremediation 5:225–234

    Article  CAS  PubMed  Google Scholar 

  • Boyajian G, Carreira L (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat Biotechnol 15:127

    Article  CAS  PubMed  Google Scholar 

  • Bozeman B (2011) The 2010 BP Gulf of Mexico oil spill: implications for theory of organizational disaster. Technol Soc 33:244–252

    Article  Google Scholar 

  • Callaham MA, Stewart AJ, Alarcón C, McMillen SJ (2002) Effects of earthworm (Eisenia fetida) and wheat (Triticum aestivum) straw additions on selected properties of petroleum-contaminated soils. Environ Toxicol Chem 21:1658–1663

    Article  CAS  PubMed  Google Scholar 

  • Cheema SA, Imran Khan M, Shen C, Tang X, Farooq M, Chen L, Zhang C, Chen Y (2010) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 177:384–389

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Banks MK (2004) Bacterial community evaluation during establishment of tall fescue (Festuca arundinacea) in soil contaminated with pyrene. Int J Phytoremediation 6:227–238

    Article  PubMed  Google Scholar 

  • Dinis MJ, Bezerra RMF, Nunes F, Dias AA, Guedes CV, Ferreira LMM, Cone JW, Marques GSM, Barros ARN, Rodrigues MAM (2009) Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 100:4829–4835

    Article  CAS  PubMed  Google Scholar 

  • Erkelens M, Adetutu EM, Taha M, Tudararo-Aherobo L, Antiabong J, Provatas A, Ball AS (2012) Sustainable remediation–the application of bioremediated soil for use in the degradation of TNT chips. J Environ Manage 110:69–76

    Article  CAS  PubMed  Google Scholar 

  • Ferro A, Sims RC, Bugbee B (1994) Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23

    Google Scholar 

  • Field JA, De Jong E, Costa GF, De Bont J (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frick CM, Farrel RE, Germida JJ (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance of Canada (PTAC), Calgary

    Google Scholar 

  • Gaskin S, Soole K, Bentham R (2008) Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. Int J Phytoremediation 10:378–389

    Article  CAS  PubMed  Google Scholar 

  • Gaskin SE, Bentham RH (2010) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci Total Environ 408:3683–3688

    Article  CAS  PubMed  Google Scholar 

  • Germida JJ, Frick CM, Farrell RE (2002) Phytoremediation of oil-contaminated soils. In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Developments in soil science. Elsevier, Amsterdam, pp 169–186

    Google Scholar 

  • Hall J, Soole K, Bentham R (2011) Hydrocarbon phytoremediation in the family Fabacea—a review. Int J Phytoremediation 13:317–332

    Article  CAS  PubMed  Google Scholar 

  • Haritash A, Kaushik C (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hultgren J, Pizzul L, Castillo MP, Granhall U (2009) Degradation of PAH in a creosote-contaminated soil. A comparison between the effects of willows (Salix viminalis), wheat straw and a nonionic surfactant. Int J Phytoremediation 12:54–66

    Article  Google Scholar 

  • Hutchinson SL, Schwab AP, Banks MK (2004) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, NJ, pp 355–386

    Google Scholar 

  • Issoufi I, Rhykerd R, Smiciklas K (2006) Seedling growth of agronomic crops in crude oil contaminated soil. J Agronomy Crop Sci 192:310–317

    Article  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kabay VG (2010) The fate of polycyclic aromatic hydrocarbons in plant-soil systems. PhD thesis. University of Melbourne, Australia

    Google Scholar 

  • Kadali KK, Simons KL, Sheppard PJ, Ball AS (2012) Mineralisation of weathered crude oil by a hydrocarbonoclastic consortia in marine mesocosms. Water Air Soil Pollut 1–13

    Google Scholar 

  • Kim J, Kang SH, Min KA, Cho KS, Lee IS (2006) Rhizosphere microbial activity during phytoremediation of diesel-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2503–2516

    Article  CAS  PubMed  Google Scholar 

  • Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wu Y, Lin X, Zhang J, Zeng J (2012) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in soil microcosms amended with mushroom cultivation substrate. Soil Biol Biochem 47:191–197

    Article  CAS  Google Scholar 

  • Liste H-H, Alexander M (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40:11–14

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Luo Y, Teng Y, Li Z, Ma LQ (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32:23–29

    Article  CAS  PubMed  Google Scholar 

  • Lors C, Damidot D, Ponge JF, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17

    Article  CAS  PubMed  Google Scholar 

  • Lors C, Ryngaert A, Périé F, Diels L, Damidot D (2010) Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil. Chemosphere 81:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Macek T, Mackova M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  PubMed  Google Scholar 

  • Makadia TH, Adetutu EM, Simons KL, Jardine D, Sheppard PJ, Ball AS (2011) Re-use of remediated soils for the bioremediation of waste oil sludge. J Environ Manage 92:866–871

    Article  CAS  PubMed  Google Scholar 

  • Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P (2010) Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 74:669–681

    Article  CAS  PubMed  Google Scholar 

  • Morgan P, Lee SA, Lewis ST, Sheppard AN, Watkinson RJ (1993) Growth and biodegradation by white-rot fungi inoculated into soil. Soil Biol Biochem 25:279–287

    Article  Google Scholar 

  • Mougin C (2002) Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycycl Aromat Comp 22:1011–1043

    Article  CAS  Google Scholar 

  • Palmroth MRT, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84:221–228

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Zhou Q, Cai Z, Zhang Z (2009) Phytoremediation of petroleum contaminated soils by Mirabilis jalapa L. in a greenhouse plot experiment. J Hazard Mater 168:1490–1496

    Article  CAS  PubMed  Google Scholar 

  • Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  CAS  PubMed  Google Scholar 

  • Phillips LA, Greer CW, Germida JJ (2006) Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38:2823–2833

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 56:15–39

    Article  CAS  Google Scholar 

  • Rhykerd R, Crews B, McInnes K, Weaver R (1999) Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil. Bioresour Technol 67:279–285

    Article  CAS  Google Scholar 

  • Rojo F (2010) Enzymes for aerobic degradation of alkanes. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 781–797

    Chapter  Google Scholar 

  • Ros M, Rodriguez I, Garcia C, Hernandez T (2010) Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments. Bioresour Technol 101:6916–6923

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195

    Article  CAS  PubMed  Google Scholar 

  • Schaefer M, Juliane F (2007) The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Appl Soil Ecol 36:53–62

    Article  Google Scholar 

  • Shahsavari E, Adetutu EM, Anderson PA, Ball AS (2013a) Necrophytoremediation of phenanthrene and pyrene in contaminated soil. J Environ Manage 122:105–112

    Article  CAS  PubMed  Google Scholar 

  • Shahsavari E, Adetutu EM, Anderson PA, Ball AS (2013b) Plant residues–a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil. Sci Total Environ 443:766–774

    Article  CAS  PubMed  Google Scholar 

  • Shahsavari E, Adetutu EM, Anderson PA, Ball AS (2013c) Tolerance of selected plant species to petrogenic hydrocarbons and effect of plant rhizosphere on the microbial removal of hydrocarbons in contaminated soil. Water Air Soil Pollut 224:1–14

    Article  CAS  Google Scholar 

  • Sheppard PJ, Adetutu EM, Makadia TH, Ball AS (2011) Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil. Soil Res 49:261–269

    Article  CAS  Google Scholar 

  • Simons KL, Ansar A, Kadali K, Bueti A, Adetutu EM, Ball AS (2012) Investigating the effectiveness of economically sustainable carrier material complexes for marine oil remediation. Bioresour Technol 126:202–207

    Article  CAS  PubMed  Google Scholar 

  • Stroud J, Paton G, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102:1239–1253

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Wang R, Niu X, Zhou Q (2010) Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms. Soil Tillage Res 110:87–93

    Article  Google Scholar 

  • Trigo C, Ball AS (1994) Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances? Microbiology 140:3145–3152

    Article  CAS  PubMed  Google Scholar 

  • Van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Tech 58:427–440

    Article  Google Scholar 

  • Wasmund K, Burns KA, Kurtböke DI, Bourne DG (2009) Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Appl Environ Microbiol 75:7391–7398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei S, Pan S (2010) Phytoremediation for soils contaminated by phenanthrene and pyrene with multiple plant species. J Soils Sediments 10:886–894

    Article  CAS  Google Scholar 

  • Wellman DE, Ulery AL, Barcellona MP, Duerr-Auster S (2001) Animal waste-enhanced degradation of hydrocarbon-contaminated soil. Soil Sediment Contam 10:511–523

    Article  CAS  Google Scholar 

  • Wentzel A, Ellingsen T, Kotlar H-K, Zotchev S, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Wu Z, Dong H, Zou L, Lu D, Liu Z (2011) Enriched microbial community in bioaugmentation of petroleum-contaminated soil in the presence of wheat straw. Appl Biochem Biotechnol 164:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Hua X-F, Han H-L, Wang J, Miao C-C, Xu Y-Y, Huang Z-D, Zhang H, Yang J-M, Jin W-B, Liu Y-M, Liu Z (2008) Enhanced bioaugmentation of petroleum- and salt-contaminated soil using wheat straw. Chemosphere 73:1387–1392

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Rengel Z, Chang H, Meney K, Pantelic L, Tomanovic R (2012) Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma 175–176:1–8

    Article  Google Scholar 

  • Zhou W, Yang J, Lou L, Zhu L (2011) Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environ Pollut 159:1198–1204

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Shahsavari Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahsavari, E., Adetutu, E.M., Ball, A.S. (2015). Phytoremediation and Necrophytoremediation of Petrogenic Hydrocarbon-Contaminated Soils. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10969-5_26

Download citation

Publish with us

Policies and ethics