Skip to main content

Phytoremediation in Constructed Wetlands

  • Chapter
  • First Online:
Phytoremediation

Abstract

Contamination of water by toxic pollutants through the discharge of municipal, domestic, hospital, and industrial wastewater has become a worldwide environmental problem due to its serious consequences on human health, agricultural crop productivity, and aquatic ecosystems. Phytoremediation using constructed wetlands (CWs) has become a logical solution to improve the quality of contaminated waters by acting as a sink for various contaminants. Hence, the present chapter is aimed to provide a concise discussion of the CWs and its phytoremediation attributes as a plant-based cleanup technology for the remediation of wastewaters. The CWs are complex ecosystems due to variable conditions of hydrology, soil and sediment types, plant species diversity, growing season, and water chemistry. Macrophytes play a vital role bringing necessary physical effects in order to remove and retain pollutants. The hydrology is the key of CWs which defines the species diversity, productivity, and nutrient cycling. The classification of CWs is based on vegetation type, hydrology, and flow direction. Various types of CWs are now being combined into hybrid systems, in order to achieve better treatment performance. Hence, phytoremediation in CWs is being of increasing interest to remediate metals and metalloids, nutrients, volatile organic compounds (VOCs), hydrocarbons, pesticides, pharmaceuticals, explosives, polycyclic aromatic hydrocarbons (PAHs), and pathogens. The relatively brief history of phytoremediation using constructed wetlands has been endeavored for most field applications in order to remediate hazardous pollutants in wastewater and thereby healing the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochem 38:89–99

    Article  CAS  Google Scholar 

  • Alexander M, Hatzinger PB, Kelsey JW, Kottler BD, Nam K (1997) Sequestration and realistic risk from toxic chemicals remaining after bioremediation. Ann N Y Acad Sci 829:1–5

    Article  CAS  PubMed  Google Scholar 

  • Amarasinghe BMWPK, Williams RA (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132:299–309

    Article  CAS  Google Scholar 

  • Amon JP, Agrawal A, Shelley ML, Opperman BC, Enright MP, Clemmer ND, Slusser T, Lach J, Sobolewski T, Gruner W, Entingh AC (2007) Development of a wetland constructed for the treatment of groundwater contaminated by chlorinated ethenes. Ecol Eng 30:51–66

    Article  Google Scholar 

  • Bachand PAM, Horne AJ (1999) Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol Eng 14:17–32

    Article  Google Scholar 

  • Bankston JL, Sola DL, Komor AT, Dwyer DF (2002) Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood. Water Res 36:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Banuelos G, Terry N (eds) (1999) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Darlene BF (1999) Environmental behavior of explosives in groundwater in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 38:3383–3396

    Article  CAS  PubMed  Google Scholar 

  • Beutel MW, Newton CD, Brouillard ES, Watts RJ (2009) Nitrate removal in surface-flow constructed wetlands treating dilute agricultural runoff in the lower Yakima Basin, Washington. Ecol Eng 35:1538–1546

    Article  Google Scholar 

  • Bradley C (2001) Wetlands (third edition) by W.J. Mitsch and J.G. Gosselink. John Wiley & Sons, New York, 2000. No. of pages: 920. Price: £60.95. ISBN 0 471 29232 X. Regul Rivers Res Manage 17:295–295

    Article  Google Scholar 

  • Brady NC, Weil RR (eds) (1996) The nature and properties of soils. Prentice-Hall, Upper Saddle River, USA

    Google Scholar 

  • Brisson J, Chazarenc F (2009) Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Sci Total Environ 407:3923–3930

    Article  CAS  PubMed  Google Scholar 

  • Brix H (1994) Function of macrophytes in constructed wetlands. Water Sci Technol 29:71–78

    CAS  Google Scholar 

  • Carmichael LM, Pfaender FK (1997) Polynuclear aromatic hydrocarbon metabolism in soils: relationship to soil characteristics and preexposure. Environ Toxicol Chem 16:666–675

    Article  CAS  Google Scholar 

  • Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325

    Article  Google Scholar 

  • Ciria MP, Solano ML, Soriano P (2005) Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosystems Eng 92:535–544

    Article  Google Scholar 

  • Clayton LR (2007) Phytoremediation. Encyclopedia of plant and crop science. Taylor & Francis, London, UK

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • DE Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  PubMed  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  CAS  PubMed  Google Scholar 

  • Duxbury CL, Dixon DG, Greenberg BM (1997) Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environ Toxicol Chem 16:1739–1748

    Article  CAS  Google Scholar 

  • Fountoulakis MS, Terzakis S, Kalogerakis N, Manios T (2009) Removal of polycyclic aromatic hydrocarbons and linear alkylbenzene sulfonates from domestic wastewater in pilot constructed wetlands and a gravel filter. Ecol Eng 35:1702–1709

    Article  Google Scholar 

  • Fraser LH, Carty SM, Steer D (2004) A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresour Technol 94:185–192

    Article  CAS  PubMed  Google Scholar 

  • Gordon M, Choe N, Duffy J, Ekuan G, Heilman P, Muiznieks I, Ruszaj M, Shurtleff BB, Strand S, Wilmoth J, Newman LA (1998) Phytoremediation of trichloroethylene with hybrid poplars. Environ Health Perspect 106:1001–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenway M (2005) The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia. Ecol Eng 25:501–509

    Article  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hedges P, Fermor P, DuÅ¡ek J (2008) The hydrological sustainability of constructed wetlands for wastewater treatment. In: Vymazal J (ed) Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Springer, Netherlands

    Google Scholar 

  • Hijosa-Valsero M, Matamoros V, Martín-Villacorta J, Bécares E, Bayona JM (2010) Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. Water Res 44:1429–1439

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann H, Platzer C, Von Münch E, Winker M (2011) Technology review of constructed wetlands—subsurface flow constructed wetlands for greywater and domestic wastewater treatment. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ),GmbH, Eschborn, Germany

    Google Scholar 

  • Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28:367–376

    CAS  PubMed  Google Scholar 

  • Huang XD, Krylov SN, Ren L, Mcconkey BJ, Dixon DG, Greenberg BM (1997) Mechanistic quantitative structure–activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: II. An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G-3. Environ Toxicol Chem 16:2296–2303

    CAS  Google Scholar 

  • Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74:349–362

    Article  CAS  PubMed  Google Scholar 

  • Jayaweera MW, Kasturiarachchi JC, Kularatne RKA, Wijeyekoon SLJ (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manage 87:450–460

    Article  CAS  PubMed  Google Scholar 

  • Jomjun N, Siripen T, Maliwan S, Jintapat N, Prasak T, Somporn C, Petch P (2010) Phytoremediation of Arsenic in submerged soil by wetland plants. Int J Phytoremediation 13:35–46

    Article  Google Scholar 

  • Kadlec RH, Wallace SD (eds) (2008) Treatment wetlands. CRC Press, Boca Raton, USA

    Google Scholar 

  • Karathanasis AD, Johnson CM (2003) Metal removal potential by three aquatic plants in an acid mine drainage wetland. Mine Water Environ 22:22–30

    Article  CAS  Google Scholar 

  • Karim MR, Manshadi FD, Karpiscak MM, Gerba CP (2004) The persistence and removal of enteric pathogens in constructed wetlands. Water Res 38:1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Khatiwada NR, Polprasert C (1999) Kinetics of fecal coliform removal in constructed wetlands. Water Sci Technol 40:109–116

    Article  CAS  Google Scholar 

  • Kularatne RKA, Kasturiarachchi JC, Manatunge JMA, Wijeyekoon SLJ (2009) Mechanisms of manganese removal from wastewaters in constructed wetlands comprising water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions. Water Environ Res 81:165–172

    Article  CAS  PubMed  Google Scholar 

  • Lesage E, Rousseau DPL, Meers E, Tack FMG, De-Pauw N (2007) Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci Total Environ 380:102–115

    Article  CAS  PubMed  Google Scholar 

  • Liao SW, Chang WL (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manage 42:60–68

    Google Scholar 

  • Lin Q, Mendelssohn IA (1998) The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol Eng 10:263–274

    Article  Google Scholar 

  • Lin ZQ, Terry N (2003) Selenium removal by constructed wetlands: quantitative importance of biological volatilization in the treatment of selenium-laden agricultural drainage water. Environ Sci Technol 37:606–615

    Article  CAS  PubMed  Google Scholar 

  • Mahatantila K, Chandrajith R, Jayasena HAH, Ranawana KB (2008) Spatial and temporal changes of hydrogeochemistry in ancient tank cascade systems in Sri Lanka: evidence for a constructed wetland. Water Environ J 22:17–24

    Article  CAS  Google Scholar 

  • Maine MA, Suñe N, Hadad H, Sánchez G, Bonetto C (2009) Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland. J Environ Manage 90:355–363

    Article  CAS  PubMed  Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  CAS  PubMed  Google Scholar 

  • Mcconkey BJ, Duxbury CL, Dixon DG, Greenberg BM (1997) Toxicity of a pah photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environ Toxicol Chem 16:892–899

    Article  CAS  Google Scholar 

  • Mccutcheon SC, Schnoor JL (eds) (2003) Phytoremediation transformation and control of contaminants. Wiley, Hoboken, NJ

    Google Scholar 

  • Medina VF, Mccutcheon SC (1996) Phytoremediation: modeling removal of TNT and its breakdown products. Remediation J 7:31–45

    Article  Google Scholar 

  • Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  PubMed  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  PubMed  Google Scholar 

  • Moore MT, Schulz R, Cooper CM, Smith JRS, Rodgers JH Jr (2002) Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere 46:827–835

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Otten A, Alphenaar A, Pijls C, Spuij F, DE Wit H (eds) (1997) In situ soil remediation. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Ottová V, Balcarová J, Vymazal J (1997) Microbial characteristics of constructed wetlands. Water Sci Technol 35:117–123

    Article  Google Scholar 

  • Polomski R, Taylor M, Bielenberg D, Bridges W, Klaine S, Whitwell T (2009) Nitrogen and phosphorus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands. Water Air Soil Pollut 197:223–232

    Article  CAS  Google Scholar 

  • Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 10:133–160

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (eds) (2000) Phytoremediation of toxic metals, using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  • Reddy KR, D’Angelo EM (1997) Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Sci Technol 35:1–10

    Article  CAS  Google Scholar 

  • Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29:83–146

    Article  CAS  Google Scholar 

  • Ren L, Huang XD, Mcconkey BJ, Dixon DG, Greenberg BM (1994) Photoinduced toxicity of three polycyclic aromatic hydrocarbons (fluoranthene, pyrene, and naphthalene) to the duckweed Lemna gibba L. G-3. Ecotoxicol Environ Saf 28:160–171

    Article  CAS  PubMed  Google Scholar 

  • Rodgers JH Jr, Dunn A (1992) Developing design guidelines for constructed wetlands to remove pesticides from agricultural runoff. Ecol Eng 1:83–95

    Article  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Scholz M, Lee BH (2005) Constructed wetlands: a review. Int J Environ Stud 62:421–447

    Article  Google Scholar 

  • Shardendu-Salhani N, Boulyga SF, Stengel E (2003) Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland. Chemosphere 50:967–973

    Article  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    Article  CAS  Google Scholar 

  • Sim CH (2003) The use of constructed wetlands for wastewater treatment. Wetlands International, Malaysia Office, Selangor, Malaysia

    Google Scholar 

  • Spieles DJ, Mitsch WJ (1999) The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low- and high-nutrient riverine systems. Ecol Eng 14:77–91

    Article  Google Scholar 

  • Stearman GK, George DB, Carlson K, Lansford S (2003) Pesticide removal from container nursery runoff in constructed wetland cells. J Environ Qual 32:1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Eke PE, Scholz M, Huang S (2009) Processes impacting on benzene removal in vertical-flow constructed wetlands. Bioresour Technol 100(1):227–234

    Google Scholar 

  • Terry N, Bañuelos G (eds) (1999) Phytoremediation of contaminated soil and water. Library of Congress Cataloging, US

    Google Scholar 

  • Terzakis S, Fountoulakis MS, Georgaki I, Albantakis D, Sabathianakis I, Karathanasis AD, Kalogerakis N, Manios T (2008) Constructed wetlands treating highway runoff in the central Mediterranean region. Chemosphere 72:141–149

    Article  CAS  PubMed  Google Scholar 

  • Türker OC, Türe C, Böcük H, Yakar A (2014) Constructed wetlands as green tools for management of boron mine wastewater. Int J Phytoremediation 16(6):537–553

    Article  PubMed  Google Scholar 

  • Vymazal J (2005) Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol Eng 25:478–490

    Article  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  CAS  PubMed  Google Scholar 

  • Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2:530–549

    Article  CAS  Google Scholar 

  • Vymazal J, Å veha J (2012) Removal of alkali metals and their sequestration in plants in constructed wetlands treating municipal sewage. Hydrobiologia 692:131–143

    Article  CAS  Google Scholar 

  • Wallace S, Kadlec R (2005) BTEX degradation in a cold-climate wetland system. Water Sci Technol 51(9):165–172

    Google Scholar 

  • Weerasinghe A, Ariyawnasa S, Weerasooriya R (2008) Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation. Chemosphere 70:521–524

    Article  CAS  PubMed  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  PubMed  Google Scholar 

  • Wießner A, Kappelmeyer U, Kuschk P, Kästner M (2005) Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Res 39:248–256

    Article  PubMed  Google Scholar 

  • Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21:607–635

    Article  CAS  Google Scholar 

  • Ye F, Li Y (2009) Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities. Ecol Eng 35:1043–1050

    Article  Google Scholar 

  • Ye ZH, Whiting SN, Lin ZQ, Lytle CM, Qian JH, Terry N (2001) Removal and distribution of iron, manganese, cobalt, and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate. J Environ Qual 30:1464–1473

    Article  CAS  PubMed  Google Scholar 

  • Yu XZ, Trapp S, Zhou PH, Chen L (2007) Effect of temperature on the uptake and metabolism of cyanide by weeping willows. Int J Phytoremediation 9:243–255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herath, I., Vithanage, M. (2015). Phytoremediation in Constructed Wetlands. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10969-5_21

Download citation

Publish with us

Policies and ethics