Skip to main content

Phytoremediation Using Microbial Communities: I

  • Chapter
  • First Online:
Phytoremediation
  • 2827 Accesses

Abstract

The presence of heavy metals in the soil through anthropogenic activities can be unfavorable to the plant growth and the environment. Different strategies have been used to remediate the polluted soils such as the use of tolerant plants, hyperaccumulators, and the soil microbes, which are able to alleviate the stress of heavy metals in the soil through absorbing and decreasing their uptake, by plant. The tolerant plants can use different mechanisms to survive under high concentration of heavy metals including the accumulation of metals in their vacuoles, decreasing their uptake by the aerial parts, and production of root products, which can affect the mobility of heavy metals in the rhizosphere. However, the hyperaccumulators are able to absorb considerable amounts of heavy metals while their growth remains unaffected. The use of biological methods such as soil microbes has been proved to be effective on the remediation of soil pollution. Different mechanisms are used by the soil microbes to remediate the polluted soils such as the production of different products, increasing plant growth, detoxifying the unfavorable effects of heavy metals, affecting the bioavailability of heavy meals, etc. In this chapter some of the most important details related to the use of soil microbes such as arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria, and endophytic microbes for the remediation of polluted soil are reviewed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assuncao AGL, Martins P, Folter S, Vooijs R, Schat H, Aarts G (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226

    Article  CAS  Google Scholar 

  • Audet P, Charest C (2007) Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147:231–237

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M, Moulin P, Lepage M (2006) Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370:391–400

    Article  CAS  PubMed  Google Scholar 

  • Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:34–368

    Article  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Guerrero M, Azcon-Aguilar C, Ferrol N (2006) GintABC1 and GintMT1 are involved in Cu and Cd homeostasis in Glomus intraradices. Abstracts of the 5th international conference on Mycorrhiza, Granada, Spain

    Google Scholar 

  • Gustin J, Loureiro M, Kim D, Na G, Tikhonova M, Salt D (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke I, Haydon M, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  PubMed  Google Scholar 

  • Herman D, Artiola J, Miller R (1995) Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ Sci Technol 29:2280–2285

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  PubMed  Google Scholar 

  • Holleman A, Wiberg E (1985) Lehrbuch der anorganischen chemie. Wiley, Berlin

    Google Scholar 

  • Kaldorf M, Kuhn A, Schroder W, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Khan A (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Kupper H, Zhao F, McGrath S (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  PubMed Central  CAS  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PHM (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  PubMed Central  PubMed  Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ Pollut 153:497–522

    Article  CAS  PubMed  Google Scholar 

  • Lynch J, Moffat A (2005) Bioremediation – prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Article  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  PubMed  Google Scholar 

  • Milner M, Kochian L (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Plant Biol 12:563–569

    Google Scholar 

  • Miransari M (2011a) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2011b) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930, Review article

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2014) Plant growth promoting rhizobacteria. J Plant Nutr 37:2227–2235

    Google Scholar 

  • Ouziad F, Hildebrandta U, Schmelzerb E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Google Scholar 

  • Pawlowska TE, Chaney RL, Chin M, Charavat I (2000) Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Appl Environ Microbiol 66:2526–2530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pence N, Larsen P, Ebbs S, Letham D, Lasat M, Garvin D, Eide D, Kochian L (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pongrac P, Vogel-Mikus K, Kump P, Necemer M, Tolrà R, Poschenrieder C, Barceló J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonization during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad M, Freitas H (2009) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567

    Article  CAS  Google Scholar 

  • Rouch DA, Lee TOB, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanisms-choice in bacterial resistance. J Ind Microbiol 14:132–141

    Article  CAS  PubMed  Google Scholar 

  • Sajedi NA, Ardakani MR, Rejali F, Mohabbati F, Miransari M (2010) Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiol Mol Biol Plants 16:343–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sajedi NA, Ardakani MR, Madani H, Naderi A, Miransari M (2011) The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol Mol Biol Plants 17:215–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schachtschabel P, Blume H-P, Brummer G, Hartge K-H, Schwertmann U (1992) Lehrbuch der bodenkunde. Ferdinand Enke, Stuttgart

    Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Liu L, Li D, Zhou W, Zhou Z, Zhang C, Luo Y, Wang H (2013) The effect of endophytic Peyronellaea from heavy metal-contaminated and uncontaminated sites on maize growth, heavy metal absorption and accumulation. Fungal Ecol 6:539–545

    Google Scholar 

  • Sheng XF, He LY, Wang QY, Ye HS, Jiang C (2008) Effects of inoculation of biosurfactant producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium amended soil. J Hazard Mater 155:17–22

    Article  CAS  PubMed  Google Scholar 

  • Smith AP, DeRidder BP, Guo WJ, Seeley EH, Regnier FE, Goldsbrough PB (2004) Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper treated seedlings. J Biol Chem 279:26098–26104

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Mikus K, Regvar M, Mesjasz-Przybylowicz J, Przybylowicz W, Simcic J, Pelicon P, Budnar M (2008) Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179:712–721

    Article  CAS  PubMed  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miransari, M. (2015). Phytoremediation Using Microbial Communities: I. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10969-5_14

Download citation

Publish with us

Policies and ethics