Advertisement

Cuckoo Search via Lévy Flights and a Comparison with Genetic Algorithms

  • Maribel Guerrero
  • Oscar Castillo
  • Mario García
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 574)

Abstract

The purpose of this paper is to present a brief literature review of the cuckoo search algorithm (CS) and analyze its behavior by applying it to a set of benchmark mathematical functions. CS is a stochastic algorithm, inspired by the nature of a family bird called Cuckoo. CS algorithms are reinforced with Lévy flights to analyze the search space in a successful manner. We performed a comparison of Cuckoo Search (CS) and Genetic Algorithm (GA), these algorithms were tested on five mathematical functions for analysis.

Keywords

Cuckoo search algorithm Genetic algorithm Levy flights 

Notes

Acknowledgment

We thank CONACYT and Tijuana Institute of Technology for the facilities and resources granted for the development of this research.

References

  1. 1.
    Chifu, V.R., Pop, C.B., Salomie, I., Suia, D.S., Niculici, A.N.: Optimizing the semantic web service composition process using cuckoo search. In: Intelligent Distributed Computing V. Studies in Computational Intelligence, vol. 382, pp. 93–102 (2012)Google Scholar
  2. 2.
    Bhargava, V., Fateen, S.E.K., Bonilla-Petriciole, A.: Cuckoo Search: A New Nature-Inspired Optimization Method for Phase Equilibrium Calculations, vol. 337, pp. 191–200 (2013). doi: 10.1016/j.fluid.2012.09.018
  3. 3.
    Choudhary, K., Purohit, G.N.: A new testing approach using cuckoo search to achieve multi-objective genetic algorithm. J. Comput. pp. 117–119 (2001)Google Scholar
  4. 4.
    Dhivya, M., Sundarambal, M., Anand, L.N.: Energy efficient computation of data fusion in wireless sensor networks using cuckoo based particle approach (CBPA). Int. J. Commun. Netw. Syst. Sci. 4, 249–255 (2001)Google Scholar
  5. 5.
    Dhivya, M., Sundarambal, M.: Cuckoo search for data gathering in wireless sensor networks. Int. J. Mobile Commun. 9, 642–656 (2011) Google Scholar
  6. 6.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing (Natural Computing Series). Springer, Berlin (2013)Google Scholar
  7. 7.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a meteheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Deb, S.: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput. Math. Appl. 63, 191–200 (2012)Google Scholar
  9. 9.
    Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Model. Numer. Optim. 4, 150–194 (2013)Google Scholar
  10. 10.
    Jamil, M., Zepernick, H.: Multimodal function optimisation with cuckoo search algorithm. Int. J. Bio-inspired Comput. 5, 73–83 (2013)Google Scholar
  11. 11.
    Ong, P., Zainuddin, Z.: An efficient cuckoo search algorithm for numerical function optimization, In: AIP Conference Proceedings, vol. 1522, pp. 1378 (2013)Google Scholar
  12. 12.
    Perumal, K., Ungati, J.M., Kumar, G., Jain, N., Gaurav, R., Srivastava, P.R.: Test data generation: a hybrid approach using cuckoo and tabu search. In: Swarm, Evolutionary, and Memetic Computing (SEMCCO2011). Lecture Notes in Computer Sciences, vol. 7077, pp: 46–54 (2013)Google Scholar
  13. 13.
    Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11, 5508–5518 (2011)CrossRefGoogle Scholar
  14. 14.
    Srivastava, P.R., Chis, M., Deb, S., Yang, X.S.: An efficient optimization algorithm for structural software testing. Int. J. Artif. Intell. 9, 68–77 (2012)Google Scholar
  15. 15.
    Tein, L.H., Ramli, R.: Recent advancements of nurse scheduling models and a potential path. In: Proceedings of 6th IMT-GT Conference on Mathematics, Statistics and Its Applications (ICMSA 2010), pp. 395–409 (2010)Google Scholar
  16. 16.
    Valdez, F., Melin, P., Castillo, O.: Fuzzy control of parameters to dynamically adapt the PSO and GA algorithms. In: Fuzzy Systems (FUZZ), 2010 IEEE International Conference, pp. 1–8, 23 July 2010Google Scholar
  17. 17.
    Valian, E., Mohanna, S., Tavakoli, S.: Improved cuckoo search algorithm for feedforward neural network training. Int. J. Artif. Intell. Appl. 2(3), 36–43 (2011)Google Scholar
  18. 18.
    Vazquez, R.A.: Training spiking neural models using cuckoo search algorithm. In: 2011 IEEE Congress on Evolutionary Computation (CEC’11), pp. 679–686 (2011)Google Scholar
  19. 19.
    Yang, X.-S.: Cuckoo Search and Firefly Algorithm, Theory and Applications. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature and Biologically Inspired Computing, 2009 (NaBIC 2009), pp. 210–214 (2009)Google Scholar
  21. 21.
    Yang, X.-S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)MATHGoogle Scholar
  22. 22.
    Yang, X.S., Deb, S.: Multi-objective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zheng, H.Q., Zhou, Y.: A novel cuckoo search optimization algorithm based on Gauss distribution. J. Comput. Inform. Syst. 8, 420–4193 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maribel Guerrero
    • 1
  • Oscar Castillo
    • 1
  • Mario García
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations