Skip to main content

Evanescent Wave Absorption Based Fiber-Optic Sensor - Cascading of Bend and Tapered Geometry for Enhanced Sensitivity

  • Chapter
Sensing Technology: Current Status and Future Trends III

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 11))

Abstract

Evanescent wave absorption (EWA) based fiber-optic sensors have found widespread applications ranging from environmental sensing to biosensing. In these sensors, optical and geometrical characteristics such as optical fiber type (single-mode or multi-mode), fiber core diameter, fiber probe geometry, fiber probe length, etc., are very important. These parameters affect the penetration depth and fractional power by modulating the ray propagating in the fiber probe that ultimately influences the sensitivity of the EWA sensors. Various geometries of fiber probe designs, like bent, tapered, coiled, etc., have been explored for improving the sensitivity. This chapter describes the design, development and fabrication of a novel bent-tapered fiber-optic sensor. A combination of bending and tapering acts as a mode converter, which results in high penetration depth of the evanescent field. In addition, tapered region of the probe increases the coupling efficiency at the detector end by V-number matching and thus improves the signal-to-noise ratio. EWA sensitivity of the sensor was compared for different taper ratios. Finally, the optimized geometrical design was used to demonstrate biosensing application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lopez-Higuera, J.M., Cobo, L.R., Incera, A.Q., Cobo, A.: Fiber optic sensors in structural health monitoring. Journal of Lightwave Technology 29, 587–608 (2011)

    Article  Google Scholar 

  2. Wren, S.P., Nguyen, T.H., Gascoine, P., Lacey, R., Sun, T., Grattan, K.T.V.: Preparation of novel optical fibre-based Cocaine sensors using a molecular imprinted polymer approach. Sensors and Actuators B: Chemical 193, 35–41 (2014)

    Article  Google Scholar 

  3. Chu, C.-S., Lin, C.-A.: Optical fiber sensor for dual sensing of temperature and oxygen based on PtTFPP/CF embedded in sol–gel matrix. Sensors and Actuators B: Chemical 195, 259–265 (2014)

    Article  Google Scholar 

  4. Karimi, M., Fabian, M., Jaroszewicz, L.R., Schuster, K., Mergo, P., Sun, T., Grattan, K.T.V.: Lateral force sensing system based on different photonic crystal fibres. Sensors and Actuators A: Physical 205, 86–91 (2014)

    Article  Google Scholar 

  5. Li, X., Li, Q., Zhou, H., Hao, H., Wang, T., Zhao, S., Lu, Y., Huang, G.: Rapid, on-site identification of explosives in nanoliter droplets using a UV reflected fiber optic sensor. Analytica Chimica Acta 751, 112–118 (2012)

    Article  Google Scholar 

  6. Fernandez-Vallejo, M., Lopez-Amo, M.: Optical fiber networks for remote fiber optic sensors. Sensors (Basel) 12(4), 3251–3929 (2012)

    Google Scholar 

  7. Bharadwaj, R., Sai, V.V.R., Thakare, K., Dhawangale, A., Kundu, T., Titus, S., Verma, P.K., Mukherji, S.: Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength. Biosensors and Bioelectronics 26(7), 3367–3370 (2011)

    Article  Google Scholar 

  8. John, M.S., Kishen, A., Sing, L.C., Asundi, A.: Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor. Appied Optics 41(34), 7334–7338 (2002)

    Article  Google Scholar 

  9. Sai, V.V.R., Kundu, T., Deshmukh, C., Titus, S., Kumar, P., Mukherji, S.: Label-free fiber optic biosensor based on evanescent wave absorbance at 280nm. Sensors and Actuators B: Chemical 143(2), 724–730 (2010)

    Article  Google Scholar 

  10. Shevchenko, Y., Camci-Unal, G., Cuttica, D.F., Dokmeci, M.R., Albert, J., Khademhosseini, A.: Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosensors and Bioelectronics 56, 359–367 (2014)

    Article  Google Scholar 

  11. Verma, R., Srivastava, S.K., Gupta, B.D.: Surface-plasmon-resonance-based fiber-optic sensor for the detection of low-density lipoprotein. IEEE Sensors Journal 12(12), 3460–3466 (2012)

    Article  Google Scholar 

  12. Sciacca, B., Monro, T.M.: Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber. Langmuir 30(3), 946–954 (2014)

    Article  Google Scholar 

  13. Jeong, H.H., Erdene, N., Park, J.H., Jeong, D.H., Lee, H.Y., Lee, S.K.: Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor. Biosensors and Bioelectronics 39(1), 346–351 (2013)

    Article  Google Scholar 

  14. Khetani, A., Riordon, J., Tiwari, V.: Hollow core photonic crystal fiber as a reusable Raman biosensor. Optics Express 21(10), 12340–12350 (2013)

    Article  Google Scholar 

  15. Dinish, U.S., Balasundaram, G., Chang, Y.T., Olivo, M.: Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Scientific Reports, 4(4075), 1–7 (2014)

    Google Scholar 

  16. Candiani, A., Bertucci, A., Giannetti, S., Konstantaki, M., Manicardi, A., Pissadakis, S., Cucinotta, A., Corradini, R., Selleri, S.: Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating. Journal of Biomedical Optics 18(5), 057004-1-057004-7 (2013)

    Google Scholar 

  17. Ryu, G., Dagenais, M., Member, S., Hurley, M.T., Deshong, P.: High specificity binding of lectins to carbohydrate-functionalized fiber bragg gratings: A new model for biosensing applications. IEEE Journal of Selected Topics in Quantum Electronics 16(3), 647–653 (2010)

    Article  Google Scholar 

  18. Pollock, C.R.: Fundamental of optoelectronics, pp. 36–38. Irwin publishers (1995)

    Google Scholar 

  19. Gloge, D.: Weakly guiding fibers. Applied Optics 10(10), 2252–2258 (1971)

    Article  Google Scholar 

  20. Powers, J.: Introduction to fiber optic systems. Irwin publishers (1997)

    Google Scholar 

  21. Tai, H., Tanaka, H., Yoshino, T.: Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-microm line of a He-Ne laser. Optics Letters 12(6), 437–439 (1987)

    Article  Google Scholar 

  22. Palais, J.: Fiber optic communications. Prentice-Hall (1998)

    Google Scholar 

  23. Satija, J., Punjabi, N.S., Sai, V.V.R., Mukherji, S.: Optimal design for U-bent fiber-optic LSPR sensor probes. Plasmonics 9(2), 251–260 (2013)

    Article  Google Scholar 

  24. Ligler, F.S., Taitt, C.: Optical biosensors: Today and tomorrow. Elsevier (2011)

    Google Scholar 

  25. Ahmad, M., Hench, L.L.: Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosensors and Bioelectronics 20(7), 1312–1319 (2005)

    Article  Google Scholar 

  26. Kuswandi, B., Andres, R., Narayanaswamy, R.: Optical fibre biosensors based on immobilised enzymes. Analyst 126(8), 1469–1491 (2001)

    Article  Google Scholar 

  27. Ruddy, V., MacCraith, B.D., Murphy, J.A.: Evanescent wave absorption spectroscopy using multimode fibers. Journal of Applied Physics 67(10), 6070–6074 (1990)

    Article  Google Scholar 

  28. Love, J.D., Henry, W.M., Stewart, W.J., Black, R.J., Lacroix, S., Gonthier, F.: Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria. IEE Proceedings -Journal of Optoelectronics 138(5), 343–354 (1991)

    Article  Google Scholar 

  29. Black, R.J., Lacroix, S., Gonthier, F., Love, J.D.: Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification. IEE Proceedings-Journal of Optoelectronics 138(5), 355–364 (1991)

    Article  Google Scholar 

  30. Littlejohn, D., Lucas, D., Han, L.: Bent silica fiber evanescent absorption sensors for near-infrared spectroscopy. Applied Spectroscopy 53(7), 845–849 (1999)

    Article  Google Scholar 

  31. DeGrandpre, M.D., Burgess, L.W.: Long path fiber-optic sensor for evanescent field absorbance measurements. Analytical Chemistry 60(23), 2582–2586 (1988)

    Article  Google Scholar 

  32. Gupta, B.D., Dodeja, H., Tomar, A.K.: Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Optical and Quantum Electronics 28(11), 1629–1639 (1996)

    Article  Google Scholar 

  33. Gupta, B.D., Sharma, N.K.: Fabrication and characterization of U-shaped fiber-optic pH probes. Sensors and Actuators B: Chemical 82(1), 89–93 (2002)

    Article  Google Scholar 

  34. Khijwania, S.K., Srinivasan, K.L., Singh, J.P.: An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity. Sensors and Actuators B: Chemical 104(2), 217–222 (2005)

    Article  Google Scholar 

  35. Sai, V.V.R., Kundu, T., Mukherji, S.: Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosensors and Bioelectronics 24(9), 2804–2809 (2009)

    Article  Google Scholar 

  36. Thompson, V.S., Maragos, C.M.: Fiber-optic immunosensor for the detection of fumonisin B1. Journal of Agricultural and Food Chemistry 44(4), 1041–1046 (1996)

    Article  Google Scholar 

  37. Pilevar, S., Davis, C.C., Portugal, F.: Tapered optical fiber sensor using near-infrared fluorophores to assay hybridization. Analytical Chemistry 70(10), 2031–2037 (1998)

    Article  Google Scholar 

  38. Leung, A., Shankar, P.M., Mutharasan, R.: Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310nm and 1550nm. Sensors and Actuators B: Chemical 131(2), 640–645 (2008)

    Article  Google Scholar 

  39. Rijal, K., Leung, A., Shankar, P.M., Mutharasan, R.: Detection of pathogen Escherichia coli O157:H7 at 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosensors and Bioelectronics 21(6), 871–880 (2005)

    Article  Google Scholar 

  40. Zibaii, M.I., Latifi, H., Arabsorkhi, M., Kazemi, A., Gholami, M., Karimi Azar, M., Hosseini, S.M.: Biconical tapered optical fiber biosensor for real-time monitoring of bovine serum albumin at femtogram/mL levels on antibody-immobilized tapered fibers. Proccedings of SPIE 7653, 765322 (2010)

    Article  Google Scholar 

  41. Hale, Z., Payne, F., Marks, R., Lowe, C., Levine, M.: The single mode tapered optical fibre loop immunosensor. Biosensors and Bioelectronics 11(1–2), 137–148 (1996)

    Article  Google Scholar 

  42. Ladouceur, F., Labeye, E.: A new general approach to optical waveguide path design. Journal of Lightwave Technology 13(3), 481–492 (1995)

    Article  Google Scholar 

  43. Leung, A., Shankar, P.M., Mutharasan, R.: A review of fiber-optic biosensors. Sensors and Actuators B: Chemical 125(2), 688–703 (2007)

    Article  Google Scholar 

  44. Punjabi, N., Satija, J., Mukherji, S.: Novel bent-tapered mode converting multimode optical fiber sensor based on Evanescent Wave Absorption. In: Seventh International Conference on Sensing Technology (ICST), pp. 545–548 (2013)

    Google Scholar 

  45. Satija, J., Mukherji, S.: Dendrimeric nano-glue material for localized surface plasmon resonance-based fiber-optic sensors. Applied Nanoscience 2(3), 293–297 (2012)

    Article  Google Scholar 

  46. Cras, J., Rowe-Taitt, C., Nivens, D., Ligler, F.: Comparison of chemical cleaning methods of glass in preparation for silanization. Biosensors and Bioelectronics 14(8–9), 683–688 (1999)

    Article  Google Scholar 

  47. Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., Smith, P.: A new class of polymers: Starburst-dendritic macromolecules. Polymer Journal 17(1), 117–132 (1985)

    Article  Google Scholar 

  48. Astruc, D., Boisselier, E., Ornelas, C.: Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chemical Review 110(4), 1857–1959 (2010)

    Article  Google Scholar 

  49. Satija, J., Karunakaran, B., Mukherji, S.: A dendrimer matrix for performance enhancement of evanescent wave absorption-based fiber-optic biosensors. RSC Advances 4(31), 15841–15848 (2014)

    Article  Google Scholar 

  50. Yuan, Y., Ding, L.: Theoretical investigation for excitation light and fluorescence signal of fiber optical sensor using tapered fiber tip. Optics Express 19(22), 21515–21523 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Punjabi, N., Satija, J., Mukherji, S. (2015). Evanescent Wave Absorption Based Fiber-Optic Sensor - Cascading of Bend and Tapered Geometry for Enhanced Sensitivity. In: Mason, A., Mukhopadhyay, S., Jayasundera, K. (eds) Sensing Technology: Current Status and Future Trends III. Smart Sensors, Measurement and Instrumentation, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-10948-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10948-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10947-3

  • Online ISBN: 978-3-319-10948-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics