Skip to main content

Reductive Decolorization of Azo Dye by Bacteria

  • Chapter
  • First Online:
Microbial Degradation of Synthetic Dyes in Wastewaters

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Archaeological studies have found the application of colorants in cliff and cave paintings by prehistoric human ancestors. Inorganic pigments include soot, ochre, manganese oxide and hematite, while organic colorants contain kermes from Kermes vermilio, alizarin from madder and indigo from natural origins. Then in 1856 William Henry Perkin, an 18 year old English chemist, accidentally discovered the world’s first synthetic dye in his attempt to synthesize the antimalarial drug quinine. The bluish substance with excellent dyeing properties was later known as mauveine or aniline purple. Since then, more than ten thousand synthetic dyes were developed and the use of synthetic dyestuffs has now far exceeded natural dyestuffs by the end of 19th century (Robinson et al., Bioresour Technol 77:247–255, 2001). It was suggested that more than 105 different commercial dyes and over 7 × 105 metric tons of dyestuffs are produced every year worldwide (Supaka et al., Chem Eng J 99:169–176, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham KJ, John GH (2007) Development of a classification scheme using a secondary and tertiary amino acid analysis of azoreductase gene. J Med Biol Sci 1:1–5

    Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Pollut 213:251–273

    Google Scholar 

  • Amoozegar MA, Hajighasemi M, Hamedi J, Asad S, Ventosa A (2010) Azo dye decolorization by halophilic and halotolerant microorganisms. Ann Microbiol 61:217–230

    Google Scholar 

  • An SY, Min SK, Cha IH, Choi YL, Cho YS, Kim CH, Lee YC (2002) Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol Lett 24:1037–1040

    Google Scholar 

  • An Y, Jiang L, Cao J, Geng C, Zhong L (2007) Sudan I induces 4 genotoxic effects and oxidative DNA damage in HepG2 cells. Mutat Res 627:164–170

    Google Scholar 

  • Anjaneya O, Souche SY, Santoshkumar M, Karegoudar TB (2011) Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. J Hazard Mater 190:351–358

    Google Scholar 

  • Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088

    Google Scholar 

  • Autrup H, Warwick GP (1975) Some characteristics of two azoreductase systems in rat liver. Relevance to the activity of 2-[4′-di(2″-bromopropyl)-aminophenylazo]benzoic acid (CB10-252), a compound possessing latent cytotoxic activity. Chem Biol Interact 11:242–329

    Google Scholar 

  • Bafana A, Chakrabarti T, Devi SS (2008) Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Appl Microbiol Biotechnol 77:1139–1144

    Google Scholar 

  • Bafana A, Chakrabarti T, Muthal P, Kanade G (2009) Detoxification of benzidine-based azo dye by E. gallinarum: time-course study. Ecotoxicol Environ Saf 72:960–964

    Google Scholar 

  • Bhatt N, Patel KC, Keharia H, Madamwar D (2005) Decolorization of diazo-dye Reactive Blue 172 by Pseudomonas aeruginosa NBAR12. J Basic Microbiol 45:407–418

    Google Scholar 

  • Blümel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Appl Microbiol Biotechnol 62:186–190

    Google Scholar 

  • Blümel S, Knackmuss HJ, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955

    Google Scholar 

  • Brigé A, Ba M, Borloo J, Buysschaert G, Devreese B, Beeumen JJ (2008) Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway. Microbiol Biotechnol 1:40–52

    Google Scholar 

  • Bürger S, Stolz A (2010) Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases. Appl Microbiol Biotechnol 87:2067–2076

    Google Scholar 

  • Cai PJ, Xiao X, He YR, Li WW, Chu J, Wu C, He MX, Zhang Z, Sheng GP, Lam MHW, Xu F, Yu HQ (2012) Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Appl Microbiol Biotechnol 93:1769–1776

    Google Scholar 

  • Cao DM, Xiao X, Wu YM, Ma XB, Wang MN, Wu YY, Du DL (2013) Role of electricity production in the anaerobic decolorization of dye mixture by exoelectrogenic bacterium Shewanella oneidensis MR-1. Bioresour Technol 136:176–181

    Google Scholar 

  • Chang JS, Chen BY, Lin YC (2004) Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli NO3. Bioresour Technol 91:243–248

    Google Scholar 

  • Chen BY (2002) Understanding decolorization characteristics of reactive azo dye by Pseudomonas lueola: toxicity and kinetics. Process Biochem 38:437–446

    Google Scholar 

  • Chen KC, Wu JY, Liou DJ, Hwang SCJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68

    Google Scholar 

  • Chen H, Wang RF, Cerniglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expres Purif 34:302–310

    Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    Google Scholar 

  • Chen H, Xu H, Heinze TM, Cerniglia CE (2009) Decolorization of water soluble and oil-soluble azo dyes by Lactobacillus acidophilus and Lactobacillus fermentum. J Ind Microbiol Biotechnol 36:1459–1466

    Google Scholar 

  • Chengalroyen MD, Dabbs ER (2013) The microbial degradation of azo dyes: minireview. World J Microbiol Biotechnol 29:389–399

    Google Scholar 

  • Dawkar VV, Jadhav UU, Ghodake GS, Govindwar SP (2009) Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation 20:777–787

    Google Scholar 

  • Dennis SK (1996) The material flow concept for materials. Nat Resour Res 5:211–233

    Google Scholar 

  • Field JA, Brady J (2003) Riboflavin as a redox mediator accelerating the reduction of azo dye mordant yellow 10 by anaerobic granular sludge. Water Sci Technol 48:187–193

    Google Scholar 

  • Gill M, Strauch RJ (1984) Constituents of Agaricus xanthodermus Genevier: the first naturally endogenous azo compound and toxic phenolic metabolites. Zeitschrift fur Naturforschung C J Biosci 39c:1027–1029

    Google Scholar 

  • Gomare SS, Govindwar SP (2009) Brevibacillus laterosporus MTCC 2298: a potential azo dye degrader. J Appl Microbiol 106:993–1004

    Google Scholar 

  • Gopinath KP, Murugesan S, Abraham J, Muthukumar K (2009) Bacillus sp. mutant for improved biodegradation of Congo Red: random mutagenesis approach. Bioresour Technol 100:6295–6300

    Google Scholar 

  • Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin SM (2008) A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 19:15–19

    Google Scholar 

  • Ito K, Nakanish M, Lee WC, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2006) Three-dimensional structure of AzoR from Escherichia coli. An oxidereductase conserved in microorganisms. J Biol Chem 281:20567–20576

    Google Scholar 

  • Jadhav SU, Jadhav MU, Kagalkar AN, Govindwar SP (2008a) Decolorization of Brilliant Blue G dye mediated by degradation of the microbial consortium of Galactomyces geotrichum and Bacillus sp. J Chin Inst Chem Engrs 39:563–570

    Google Scholar 

  • Jadhav UU, Dawkar VV, Ghodake GS, Govindwar SP (2008b) Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS. J Hazard Mater 158:507–516

    Google Scholar 

  • Jadhav JP, Phugare SS, Dhanve RS, Jadhav SB (2010) Rapid biodegradation and decolorization of Direct Orange 39 (Orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH. Biodegradation 21:453–463

    Google Scholar 

  • Jadhav SB, Surwase SN, Kalyani DC, Gurav RG, Jadhav JP (2012) Biodecolorization of azo dye Remazol Orange by Pseudomonas aeruginosa BCH and toxicity (oxidative stress) reduction in Allium cepa root cells. Appl Biochem Biotechnol 168:1319–1334

    Google Scholar 

  • Jadhav SB, Patil NS, Watharkar AD, Apine OA, Jadhav JP (2013) Batch and continuous biodegradation of Amaranth in plain distilled water by P. aeruginosa BCH and toxicological scrutiny using oxidative stress studies. Environ Sci Pollut Res 20:2854–2866

    Google Scholar 

  • Jin X, Liu G, Xu Z, Yao W (2007) Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74:239–243

    Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742

    Google Scholar 

  • Kargi F (2002) Empirical models for biological treatment of saline wastewater in rotating biodisc contactor. Process Biochem 38:399–403

    Google Scholar 

  • Keck A, Klein J, Kudlich M, Stolz A, Knackmuss HJ, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl Environ Microbiol 63:3684–3690

    Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2008) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79:1053–1059

    Google Scholar 

  • Khalid A, Kausar F, Arshad M, Mahmood T, Ahmed I (2012) Accelerated decolorization of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment. Appl Microbiol Biotechnol 96:1599–1606

    Google Scholar 

  • Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12:75–97

    Google Scholar 

  • Kolekar YM, Kodam KM (2012) Decolorization of textile dyes by Alishewanella sp. KMK6. Appl Microbiol Biotechnol 95:521–529

    Google Scholar 

  • Kolekar YM, Pawar SP, Gawai KR, Lokhande PD, Shouche YS, Kodam KM (2008) Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresour Technol 99:8999–9003

    Google Scholar 

  • Kolekar YM, Konde PD, Markad VL, Kulkarni SV, Chaudhari AU, Kodam KM (2013) Effective bioremoval and detoxification of textile dye mixture by Alishewanella sp. KMK6. Appl Microbiol Biotechnol 97:881–889

    Google Scholar 

  • Kulla HG, Klausener F, Meyer U, Lüdeke B, Leisinger T (1983) Interference of aromatic sulfo groups in the microbial degradation of the azo dyes Orange I and Orange II. Arch Microbiol 135:1–7

    Google Scholar 

  • Kurade MB, Waghmode TR, Tamboli DP, Govindwar SP (2013) Differential catalytic action of Brevibacillus laterosporus on two dissimilar azo dyes Remazol red and Rubine GFL. J Basic Microbiol 53:136–146

    Google Scholar 

  • Lang W, Sirisansaneeyakul S, Ngiwsara L, Mendes S, Martins LO, Okuyam M, Kimura A (2013) Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: Toward dye decolorization using a packed-bed metal affinity reactor. Bioresour Technol 150:298–306

    Google Scholar 

  • Liao CS, Hung CH, Chao SL (2013) Decolorization of azo dye reactive black B by Bacillus cereus strain HJ-1. Chemosphere 90:2109–2114

    Google Scholar 

  • Lim CK, Bay HH, Aris A, Majid ZA, Ibrahim Z (2013) Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach. Envrion Sci Pollut Res 20:5056–5066

    Google Scholar 

  • Liu G, Zhou J, Wang J, Song Z, Qv Y (2006) Bacterial decolorization of azo dyes by Rhodopseudomonas palustris. World J Microbiol Biotechnol 22:1069–1074

    Google Scholar 

  • Liu G, Zhou J, Lv H, Xiang X, Wang J, Zhou M, Qv Y (2007a) Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin also functions as nitroreductase and flavin mononucleotide reductase. Appl Microbiol Biotechnol 76:1271–1279

    Google Scholar 

  • Liu G, Zhou J, Qv Y, Ma X (2007b) Decolorization of sulfonated azo dyes with two photosynthetic bacterial strains and a genetically engineered Escherichia coli strain. World J Microbiol Biotechnol 23:931–937

    Google Scholar 

  • Liu G, Zhou J, Jin R, Zhou M, Wang J, Lu H, Qv Y (2008) Enhancing survival of Escherichia coli by expression of azoreductase AZR possessing quinone reductase activity. Appl Microbiol Biotechnol 80:409–416

    Google Scholar 

  • Liu G, Zhou J, Fu QS, Wang J (2009) The Escherichia coli azoreductase AzoR is involved in resistance to thiol-specific stress caused by electrophilic quinones. J Bacteriol 191:6394–6400

    Google Scholar 

  • Liu G, Zhou J, Wang J, Wang X, Jin R, Lv H (2011) Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Appl Microbiol Biotechnol 91:417–424

    Google Scholar 

  • Liu G, Zhou J, Chen C, Wang J, Jin R, Lv H (2013a) Decolorization of azo dyes by Geobacter metallireducens. Appl Microbiol Biotechnol 97:7935–7942

    Google Scholar 

  • Liu G, Zhou J, Meng X, Fu QS, Wang J, Jin R, Lv H (2013b) Decolorization of azo dyes by marine Shewanella strains under saline conditions. Appl Microbiol Biotechnol 97:4187–4197

    Google Scholar 

  • Lu H, Zhou J, Wang J, Si W, Teng H, Liu G (2010) Enhanced biodecolorization of azo dyes by anthraquinone-2-sulfonate immobilized covalently in polyurethane foam. Bioresour Technol 101:7185–7188

    Google Scholar 

  • Maier J, Kandelbauer A, Erlacher A, Cavaco-Paulo A, Gübitz GM (2004) A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl Environ Microbiol 70:837–844

    Google Scholar 

  • Matsumoto K, Mukai Y, Ogata D, Shozui F, Nduko JM, Taguchi S, Ooi T (2010) Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl Microbiol Biotechnol 86:1431–1438

    Google Scholar 

  • Mazumder R, Logan JR Jr, Mikell AT, Hooper SW (1999) Characteristics and purification of an oxygen insensitive azoreductase from Caulobacter subvibrioides strain C7-D. J Ind Microbiol Biotechnol 23:476–483

    Google Scholar 

  • Mendes S, Pereira L, Batista C, Martins LO (2011) Molecular determinants of azo reduction activity in the strain Pseudomonas putida MET94. Appl Microbiol Biotechnol 92:393–405

    Google Scholar 

  • Meng X, Liu G, Zhou J, Fu QS, Wang G (2012) Azo dye decolorization by Shewanella aquimarina under saline conditions. Bioresour Technol 114:95–101

    Google Scholar 

  • Misal SA, Lingojwar DP, Shinde RM, Gawai KR (2011) Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Process Biochem 46:1264–1269

    Google Scholar 

  • Misal SA, Lingojwar DP, Gawai KR (2013) Properties of NAD(P)H azoreductase from alkaliphilic red bacteria Aquiflexum sp. DL6. Protein J 32:601–608

    Google Scholar 

  • Misal SA, Lingojwar DP, Lokhande MN, Lokhande PD, Gawai KR (2014) Enzymatic transformation of nitro-aromatic compounds by a flavin-free NADH azoreductase from Lysinibacillus sphaericus. Biotechnol Lett 36:127–131

    Google Scholar 

  • Modi HA, Rajput G, Ambasana C (2010) Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresour Technol 101:6580–6583

    Google Scholar 

  • Morrison JM, Wright CM, John GH (2012) Identification, isolation and characterization of a novel azoreductase from Clostridium perfringens. Anaerobe 18:229–234

    Google Scholar 

  • Moutaouakkil A, Zeroual Y, Dzayri FZ, Talbi M, Lee K, Blaghen M (2003) Purification and partial characterization of azoreductase from Enterobacter agglomerans. Arch Biochem Biophys 413:139–146

    Google Scholar 

  • Nachiyar CV, Rajakumar GS (2005) Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enzyme Microb Technol 36:503–509

    Google Scholar 

  • Nakanish M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399

    Google Scholar 

  • Ng IS, Chen T, Lin R, Zhang X, Ni C, Sun D (2013) Decolorization of textile azo dye and Congo Red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5151-z

    Google Scholar 

  • Olukanni OD, Osuntoki AA, Kalyani DC, Gbenle GO, Govindwar SP (2010) Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J Hazard Mater 184:290–298

    Google Scholar 

  • Olukanni OD, Osuntoki AA, Awotula AO, Kalyani DC, Gbenle GO, Govindwar SP (2013) Decolorization of dyehouse effluent and biodegradation of Congo Red by Bacillus thuringiensis RUN1. J Microbiol Biotechnol 23:843–849

    Google Scholar 

  • O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W (1999) Color in textile effluents sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018

    Google Scholar 

  • Ooi T, Shibata T, Sato R, Ohno H, Kinoshita S, Thuoc TL, Taguchi S (2007) An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization. Appl Microbiol Biotechnol 75:377–386

    Google Scholar 

  • Ooi T, Shibata T, Matsumoto K, Kinoshita S, Taguchi S (2009) Comparative enzymatic analysis of azoreductases from Bacillus sp. B29. Biosci Biotechnol Biochem 73:1209–1211

    Google Scholar 

  • Oturkar CC, Patole MS, Gawai KR, Madamwar D (2013) Enzyme based cleavage strategy of Bacillus lentus BI377 in response to metabolism of azoic recalcitrant. Bioresour Technol 130:360–365

    Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeter Biodegr 59:73–84

    Google Scholar 

  • Pereira RA, Pereira MFR, Alves MM, Pereira L (2014) Carbon based materials as novel redox mediators for dye wastewater biodegradation. Appl Catal B Environ 144:713–720

    Google Scholar 

  • Punj S, John GH (2009) Purification and identification of an FMN-dependent NAD(P)H azoreductase from Enterococcus faecalis. Curr Issues Mol Biol 11:59–66

    Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2009) Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using Micrococcus glutamicus NCIM-2168. Bioresour Technol 100:3897–3905

    Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    Google Scholar 

  • Sarayu K, Sandhya S (2010) Aerobic biodegradation pathway for Remazol Orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol 160:1241–1253

    Google Scholar 

  • Solís M, Solís A, Pérez HI, Manjarrez N, Flores M (2012) Microbial decoloration of azo dyes: a review. Process Biochem 47:1723–1748

    Google Scholar 

  • Stoddart AM, Levine WG (1992) Azoreductase activity by purified rabbit liver aldehyde oxidase. Biochem Pharmacol 43:2227–2235

    Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Google Scholar 

  • Supaka NJ, Somsak DKD, Pierre MLS (2004) Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chem Eng J 99:169–176

    Google Scholar 

  • Suzuki Y, Yoda T, Ruhul A, Sugiura W (2001) Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. J Biol Chem 276:9059–9065

    Google Scholar 

  • Tamboli DP, Kagalkar AN, Jadhav MU, Jadhav JP, Govindwar SP (2010a) Production of polyhydroxyhexadecanoic acid by using waste biomass of Sphingobacterium sp. ATM generated after degradation of textile dye Direct Red 5B. Bioresour Technol 101:2421–2427

    Google Scholar 

  • Tamboli DP, Kurade MB, Waghmode TR, Joshi SM, Govindwar SP (2010b) Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation. J Hazard Mater 182:169–176

    Google Scholar 

  • Telke A, Kalyani D, Jadhav J, Govindwar S (2008) Kinetics and mechanism of Reative Red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim Slov 55:320–329

    Google Scholar 

  • van der Zee Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27:256–277

    Google Scholar 

  • van der Zee FP, Burwman RHM, Strik DPTB, Lettinga G, Field JA (2001) Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactor. Biotechnol Bioeng 75:691–701

    Google Scholar 

  • Vijaykumar MH, Vaishampayan PA, Shouche YS, Karegouda TB (2007) Decolorization of naphthalene-containing sulfonated azo dyes by Kerstersia sp. strain VKY1. Enzym Microb Technol 40:204–211

    Google Scholar 

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Google Scholar 

  • Wang CJ, Hagemeier C, Rahman N, Lowe E, Noble M, Coughtrie M, Sim E, Westwood I (2007) Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol 373:1213–1228

    Google Scholar 

  • Wang H, Su JQ, Zheng XW, Tian Y, Xiong XJ, Zheng TL (2009a) Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int Biodeter Biodegr 63:395–399

    Google Scholar 

  • Wang H, Zheng XW, Su JQ, Tian Y, Xiong XJ, Zheng TL (2009b) Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater 171:654–659

    Google Scholar 

  • Wong PK, Yuen PY (1996) Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Res 30:1736–1744

    Google Scholar 

  • Xu M, Guo J, Sun G (2007) Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl Microbiol Biotechnol 76:719–726

    Google Scholar 

  • Yan B, Zhou J, Wang J, Du C, Hou H, Song Z, Bao Y (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136

    Google Scholar 

  • Yu L, Li WW, Lam MHW, Yu HQ, Wu C (2012) Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production. Appl Microbiol Biotechnol 95:255–262

    Google Scholar 

  • Zhao L, Zhou J, Jia Y, Chen J (2010) Biodecolorization of Acid Red GR by a newly isolated Dyella ginsengisoli LA-4 using response surface methodology. J Hazard Mater 181:602–608

    Google Scholar 

  • Zimmermann T, Kulla HG, Leisinger T (1982) Properties of purified II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    Google Scholar 

  • Zimmermann T, Gasser F, Kulla HG, Leisinger T (1984) Comparison of two bacterial azoreductases acquired during adaption to growth on azo dyes. Arch Microbiol 138:37–43

    Google Scholar 

  • Zollinger H (1987) Color chemistry-synthesis, properties of organic dyes and pigments. VCH Publishers, New York

    Google Scholar 

Download references

Acknowledgement

The authors appreciated National Natural Science Foundation of China (No. 51008044) and Mrs Rong Li for supporting us to finish this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangfei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, G., Zhou, J., Wang, J., Zhang, X., Dong, B., Wang, N. (2015). Reductive Decolorization of Azo Dye by Bacteria. In: Singh, S. (eds) Microbial Degradation of Synthetic Dyes in Wastewaters. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-10942-8_5

Download citation

Publish with us

Policies and ethics