Advertisement

State Feedback Control with ANN Based Load Torque Feedforward for PMSM Fed by 3-Level NPC Inverter with Sinusoidal Output Voltage Waveform

  • Lech GrzesiakEmail author
  • Tomasz Tarczewski
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 325)

Abstract

The approach presented in this work focuses on the full state feedback algorithm designed to control the angular velocity of the PMSM and to provide true sine wave of the 3-level neutral point clamped inverter output voltages. Artificial neural network based feedforward path was introduced into control system in order to improve dynamic behaviour of the PMSM during load changing and to reduce the effect of load torque changes. It was shown that gains of the designed controller and feedforward path are non-stationary and depends on the angular velocity. The simulation results demonstrate the advantages of the proposed approach with comparison to state feedback control system without feedforward path.

Keywords

State feedback controller Artificial neural network Load torque feedforward 3-level neutral point clamped inverter LC filter Permanent magnet synchronous motor Disturbance observer 

Notes

Acknowledgments

Research work financed by The National Science Centre (Poland) under Grant no 6636/B/T02/2011/40 (from 2011 to 2013).

References

  1. 1.
    Huang, S., Tan, K.K.: Intelligent friction modeling and compensation using neural network approximations. IEEE Trans. Ind. Electron. 59(8), 3342–3349 (2012)CrossRefGoogle Scholar
  2. 2.
    Selmic, R.R., Lewis, F.L.: Deadzone compensation in motion control systems using neural networks. IEEE Trans. Autom. Control 45(4), 602–613 (2000)Google Scholar
  3. 3.
    Pajchrowski, T., Zawirski, K.: Adaptive neural speed controller for PMSM servodrive with variable parameters. In: 15th International Power Electronics and Motion Control Conference, pp. LS6b.3-1-LS6b.3-5, IEEE Press, New York (2012)Google Scholar
  4. 4.
    Iwasaki, M., Seki, K., Maeda, Y.: High-precision motion control techniques: a promising approach to improving motion performance. IEEE Ind. Electron. Mag. 6(1), 32–40 (2012)CrossRefGoogle Scholar
  5. 5.
    Mun-Soo, K., Song, D.-S., Lee, Y.-K., Won, T.-H., Park, H.-W., Jung, Y.-I., Lee, M.H., Lee, H.: A robust control of permanent magnet synchronous motor using load torque estimation. In: International Symposium on Industrial Electronics, vol. 2, pp. 1157–1162. IEEE Press, New York (2001)Google Scholar
  6. 6.
    Grzesiak, L.M., Tarczewski T.: PMSM servo-drive control system with a state feedback and a load torque feedforward compensation, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32, iss. 1, pp. 364–382, (2013).Google Scholar
  7. 7.
    Gulez, K., Adam, A.A., Pastaci, H.: Torque ripple and EMI noise minimization in PMSM using active filter topology and field-oriented control. IEEE Trans. Ind. Electron. 55(1), 251–257 (2008)CrossRefGoogle Scholar
  8. 8.
    Tarczewski, T., Grzesiak, L.M.: PMSM fed by 3-level NPC sinusoidal inverter with discrete state feedback controller. In: 15th European Conference on Power Electronics and Applications, pp. 1–9, IEEE Press, New York (2013)Google Scholar
  9. 9.
    Pawlikowski, A., Grzesiak, L.: Vector-controlled three-phase voltage source inverter producing a sinusoidal voltage for AC motor drives. In: The International Conference on "Computer as a Tool", pp. 1902–1909 (2007)Google Scholar
  10. 10.
    Pillay, P., Krishnan, R.: Modeling of permanent magnet motor drives. IEEE Trans. Ind. Electron. 35(4), 537–541 (1988)CrossRefGoogle Scholar
  11. 11.
    Zawirski, K.: Control of Permanent Magnet Synchronous Motor. Poznan University of Technology Publishers, Poznan (2005). (in Polish)Google Scholar
  12. 12.
    Tewari, A.: Modern Control Design with Matlab and Simulink. Wiley, Chichester (2002)Google Scholar
  13. 13.
    Lee, D.-C., Sul, S.-K., Park, M.-H.: High performance current regulator for a field-oriented controlled induction motor drive. IEEE Trans. Ind. Appl. 30(5), 1247–1257 (1994)Google Scholar
  14. 14.
    Luenberger, D.: An introduction to observers. IEEE Trans. Autom. Control 16(6), 596–602 (1971)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Rodriguez, J., Bernet, S., Steimer, P.K., Lizama, I.E.: A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219–2230 (2010)CrossRefGoogle Scholar
  16. 16.
    Steinke, J.K.: Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter. IEEE Trans. Energy Convers. 14(3), 649–654 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Control and Industrial ElectronicsWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of Physics, Faculty of Physics, Astronomy and InformaticsNicolaus Copernicus UniversityTorunPoland

Personalised recommendations