Advertisement

Passive Parametric Macromodeling by Using Sylvester State-Space Realizations

  • Elizabeth Rita SamuelEmail author
  • Luc Knockaert
  • Tom Dhaene
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 325)

Abstract

A judicious choice of the state-space realization is required in order to account for the assumed smoothness of the state-space matrices with respect to the design parameters. The direct parameterization of poles and residues may be not appropriate, due to their possible non-smooth behavior with respect to design parameters. This is avoided in the proposed technique, by converting the pole-residue description to a Sylvester description which is computed for each root macromodel. This technique is used in combination with suitable parameterizing schemes for interpolating a set of state-space matrices, and hence the poles and residues indirectly, in order to build accurate parametric macromodels. The key features of the present approach are first the choice of a proper pivot matrix and second, finding a well-conditioned solution of a Sylvester equation. Stability and passivity are guaranteed by construction over the design space of interest. Pertinent numerical examples validate the proposed Sylvester technique for parametric macromodeling.

Keywords

Sylvester equation Parametric macromodel State-space matrices Interpolation 

Notes

Acknowledgments

This research has been funded by the Research Foundation Flanders (FWO) and the Interuniversity Attraction Poles Programme BESTCOM initiated by the Belgian Science Policy Office.

References

  1. 1.
    Ferranti, F., Knockaert, L,. Dhaene, T.: Guaranteed passive parameterized admittance-based macromodeling, IEEE Trans. Adv. Pack., 33(3), 623–629 (2010)Google Scholar
  2. 2.
    Ferranti, F., Knockaert, L., Dhaene, T.: Parameterized S-parameter based macromodeling with guaranteed passivity. IEEE Microw. Wireless Compon Lett, 19(10), 608610 (2009)Google Scholar
  3. 3.
    Ferranti, F., Knockaert, L., Dhaene, T., Antonini, G.: Passivity preserving parametric macromodeling for highly dynamic tabulated data based on Lure equations. IEEE Trans. Micro. Theor. Tech. 58(12), 3688–3696 (2010)Google Scholar
  4. 4.
    Triverio, P., Nakhla, M., Grivet-Talocia, S.: Passive parametric modeling of interconnects and packaging components from sampled impedance, admittance or scattering data. Electron. Syst. Integr. Technol. Conf. pp. 16, Sept. (2010)Google Scholar
  5. 5.
    De Caigny, J., Camino, J.F., Swevers, J.: Interpolating model identication for siso linear parameter-varying systems. Mech. Syst. Signal Proc. 23(8), 23952417 (2009)CrossRefGoogle Scholar
  6. 6.
    Samuel, E.R., Knockaert, L., Ferranti, F., Dhaene, T.: Guaranteed passive parameterized macromodeling by using sylvester state-space realizations. IEEE Trans. Microwave Theor. Tech. 61(4), 1444–1454 (April 2013)Google Scholar
  7. 7.
    Gilbert, E.G.: Controllability and observability in multi-variable control systems. SIAM J. Control 1(2), 128151 (1963)Google Scholar
  8. 8.
    Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 1731 (Feb. 1981)Google Scholar
  9. 9.
    Lovera, M., Mercere, G.: Identification for gain-scheduling: a balanced subspace approach. Am. Control Conf. 2007, pp. 858–863, (July 2007)Google Scholar
  10. 10.
    Anderson, B.D.O., Vongpanitlerd, S.: Network Analysis and Synthesis. NJ, Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  11. 11.
    Ferranti, F., Knockaert, L., Dhaene, T., Antonini, G.: Parametric macromodeling for S-parameter data based on internal nonexpansivity, Int. J. Num. Model. Electron. Netw. Devices Fields 26(1), 1527 (2013)Google Scholar
  12. 12.
    Ferranti, F., Knockaert, L., Dhaene, T.: Passivity-preserving parametric macromodeling by means of scaled and shifted state-space systems, IEEE Trans. Microwave Theor. Tech. 59(10), 2394–2403, (Oct 2011)Google Scholar
  13. 13.
    De Souza, E., Bhattacharyya, S.P.: Controllability, observability and the solution of AX-XB = C. Lin. Alg. Appl. 39, 167–188 (1981)CrossRefzbMATHGoogle Scholar
  14. 14.
    Varga, A.: Robust pole assignment via sylvester equation based state feedback parametrization. Proceedings IEEE International Symposium on Computer-Aided Control System Design, pp. 13–18, 2000Google Scholar
  15. 15.
    Gustavsen, B., Semlyen, A.: Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Delivery 14(3), 1052–1061 (July 1999)Google Scholar
  16. 16.
    Carvalho, J., Datta, K., Hong, Y.: A new block algorithm for full-rank solution of the Sylvester-observer equation. IEEE Trans. Autom. Control 48(12), 2223–2228 (Dec. 2003)Google Scholar
  17. 17.
    Boyd, S., Vandenberghe, L.: Convex Optimization, Cambridge University Press, Cambridge, U.K., 2004. Available at http://www.math.nus.edu.sg/ mattohkc/sdpt3.html
  18. 18.
    Löfberg, J.: " YALMIP: a toolbox for modeling and optimization in MATLAB. Proceedings of CACSD Conference, Taipei, Taiwan, 2004. Available: http://control.ee.ethz.ch/joloef/yalmip.php
  19. 19.
    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (web page and software), July 2008. Available: http://www.stanford.edu/boyd/cvx/
  20. 20.
    Mattingley, J.E., Boyd, S.: "CVXMOD: convex optimization software in Python (web page and software), Aug. 2008. Available: http://cvxmod.net/
  21. 21.
    Benavides, N.L., Carr, R.D., Hart, W.E.: Python optimization modeling objects (Pyomo). In: Proceedings of INFORMS Computing Society Conference, 2009. Available: https://software.sandia.gov/trac/pyutilib/export/30/trunk/doc/ pyomo.pdf
  22. 22.
    Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Global optimization: from theory to implementation (Nonconvex Optimization and Its Applications), L. Liberti and N. Maculan, Eds. New York: Springer Science and Business Media, pp. 155–210, 2006Google Scholar
  23. 23.
    Mattingley, J., Boyd, S.: Real-time convex optimization in signal processing. IEEE Signal Proc. Mag. 27(3), 50–61 (2010)CrossRefGoogle Scholar
  24. 24.
    Curtain, R.F.: Old and new perspectives on the positive-real lemma in systems and control theory. Z. Angew. Math. Mech. 79(9), 579–590 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM Studies in Applied Mathematics, 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994Google Scholar
  26. 26.
    Weiss, H., Wang, Q., Speyer, J.L.: System characterization of positive real conditions. IEEE. Trans. Autom. Contr. 39(3), 540–544 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Knockaert, L., Dhaene, T., Ferranti, F., De Zutter, D.: Model order reduction with preservation of passivity, non-expansivity and Markov moments. Syst Control Lett. 60(1), 53–61 (Jan. 2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Elizabeth Rita Samuel
    • 1
    Email author
  • Luc Knockaert
    • 1
  • Tom Dhaene
    • 1
  1. 1.Ghent University—IMindsGentBelgium

Personalised recommendations