Abstract
This paper describes and evaluates a grammar-based machine translation system for the Swedish-Danish language pair. Source-language structural analysis, polysemy resolution, syntactic movement rules and target-language agreement are based on Constraint Grammar morphosyntactic tags and dependency trees. Lexical transfer rules exploit dependency links to access contextual information, such as syntactic argument function, semantic type and quantifiers, or to integrate verbal features, e.g. diathesis and auxiliaries. Out-of-vocabulary words are handled by derivational and compound analysis with a combined coverage of 99.3%, as well as systematic morpho-phonemic transliterations for the remaining cases. The system achieved BLEU scores of 0.65-0.8 depending on references and outperformed both STMT and RBMT competitors by a large margin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahsan, A., Kolachina, P., Kolachina, S., Sharma, D.M.: Coupling Statistical Machine Translation with Rule-based Transfer and Generation. In: Proceedings of the 9th Conference of the Association for Machine Translation in the Americas, Denver, Colorado (2010), http://amta2010.amtaweb.org/AMTA/papers/2-06-AhsanKolachinaEtal.pdf
Bick, E.: Dan2eng: Wide-Coverage Danish-English Machine Translation. In: Maegaard, B. (ed.) Proceedings of Machine Translation Summit XI, Copenhagen, Denmark, September 10-14, pp. 37–43 (2007)
Bick, E., Nygaard, L.: Using Danish as a CG Interlingua: A Wide-Coverage Norwegian-English Machine Translation System. In: Nivre, J., Kaalep, H.-J., Muischnek, K., Koit, M. (eds.) Proceedings of the 16th Nordic Conference of Computational Linguistics, May 24-26, pp. 21–28. University of Tartu (2007)
Bick, E.: Turning Constraint Grammar Data into Running Dependency Treebanks. In: Civit, M., Kübler, S., MartÃ, M.A. (eds.) Proceedings of TLT 2005, pp. 19–27. Universitat de Barcelona (2005)
Carpuat, M., Wu, D.: Word Sense Disambiguation vs. Statistical Machine Translation. In: Knight, K., Ng, H.T., Oflazer, K. (eds.) Proceedings of ACL 2005, pp. 387–394. Association for Computational Linguistics, Stroudsburg (2005)
Koehn, P.: Europarl: A Parallel Corpus for Machine Translation. Machine Translation Summit, pp. 79–86 (2005)
Papineni, K., et al.: BLEU: A Method for Automatic Evaluation of Machine Translation. In: Proceedings of the 40th ACL, Philadelphia, pp. 311–318 (July 2002)
Seiss, M., Nordlinger, R.: An Electronic Dictionary and Translations System for Murrinh-Patha. In: Gimeno, A. (ed.) Proceedings of EUROCALL 2011, vol. 20(1) (2012); The Eurocall Review
Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proceedings of Association for Machine Translation in the Americas, pp. 223–231 (2006)
Tyers, F.M., Sánchez-MartÃnez, F., Ortiz-Rojas, S., Forcada, M.L.: Free/open-source resources in the Apertium platform for machine translation research and development. The Prague Bulletin of Mathematical Linguistics (93), 67–76 (2010)
Tyers, F.M., Nordfalk, J.: Shallow-transfer rule-based machine translation for Swedish to Danish. In: Pérez-Ortiz, J.A., Sánchez-MartÃnez, F., Tyers, F.M. (eds.) Proceedings of the First International Workshop on Free/Open-Source Rule-Based Machine Translation, pp. 27–33. Universidad de Alicante, Alicante (2009)
Xu, P., Kang, J., Ringgaard, M., Och, F.: Using a dependency parser to improve SMT for subject-object-verb languages. In: Proceedings of NAACL 2009, pp. 245–253. Association for Computational Linguistics, Morristown (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bick, E. (2014). Constraint Grammar-Based Swedish-Danish Machine Translation. In: Przepiórkowski, A., Ogrodniczuk, M. (eds) Advances in Natural Language Processing. NLP 2014. Lecture Notes in Computer Science(), vol 8686. Springer, Cham. https://doi.org/10.1007/978-3-319-10888-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-10888-9_23
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10887-2
Online ISBN: 978-3-319-10888-9
eBook Packages: Computer ScienceComputer Science (R0)