Skip to main content

A Logical Descriptor for Regular Languages via Stone Duality

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8687)

Abstract

In this paper we introduce a class of descriptors for regular languages arising from an application of the Stone duality between finite Boolean algebras and finite sets. These descriptors, called classical fortresses, are object specified in classical propositional logic and capable to accept exactly regular languages. To prove this, we show that the languages accepted by classical fortresses and deterministic finite automata coincide. Classical fortresses, besides being propositional descriptors for regular languages, also turn out to be an efficient tool for providing alternative and intuitive proofs for the closure properties of regular languages.

Keywords

  • regular languages
  • finite automata
  • propositional logic
  • Stone duality

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10882-7_3
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-10882-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blok, W., Pigozzi, D.: Algebraizable logics. Memoirs of The American Mathematical Society, vol. 77. American Mathematical Society (1989)

    Google Scholar 

  2. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. In: Mathematical Theory of Automata. MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Polytechnic Institute of Brooklyn (1962)

    Google Scholar 

  3. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

    CrossRef  MATH  Google Scholar 

  4. Burris, S., Sankappanavar, H.P.: A course in Universal Algebra. Springer (1981)

    Google Scholar 

  5. Cintula, P., Hájek, P., Noguera, C.: Handbook of Mathematical Fuzzy Logic, vol. 2. College Publications (2011)

    Google Scholar 

  6. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–51 (1961)

    CrossRef  MathSciNet  Google Scholar 

  7. Hansen, H.H., Panangaden, P., Rutten, J.J.M.M., Bonchi, F., Bonsangue, M.M., Silva, A.: Algebra-coalgebra duality in Brzozwski’s minimization algorithm. ACM Transactions on Computational Logic (to appear)

    Google Scholar 

  8. Gehrke, M.: Duality and recognition. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 3–18. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  9. Gehrke, M., Grigorieff, S., Pin, J.-É.: Duality and equational theory of regular languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley (2000)

    Google Scholar 

  11. Johnstone, P.T.: Stone Spaces. Cambridge University Press (1982)

    Google Scholar 

  12. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press (1956)

    Google Scholar 

  13. Weyuker, E.J., Davis, M.E., Sigal, R.: Computability, complexity, and languages: Fundamentals of theoretical computer science. Academic Press, Boston (1994)

    Google Scholar 

  14. Trakhtenbrot, B.A.: Finite automata and the logic of oneplace predicates. Siberian Math. J. 3, 103–131 (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Aguzzoli, S., Diaconescu, D., Flaminio, T. (2014). A Logical Descriptor for Regular Languages via Stone Duality. In: Ciobanu, G., Méry, D. (eds) Theoretical Aspects of Computing – ICTAC 2014. ICTAC 2014. Lecture Notes in Computer Science, vol 8687. Springer, Cham. https://doi.org/10.1007/978-3-319-10882-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10882-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10881-0

  • Online ISBN: 978-3-319-10882-7

  • eBook Packages: Computer ScienceComputer Science (R0)