Constrained Verifiable Random Functions
- 17 Citations
- 985 Downloads
Abstract
We extend the notion of verifiable random functions (VRF) to constrained VRFs, which generalize the concept of constrained pseudorandom functions, put forward by Boneh and Waters (Asiacrypt’13), and independently by Kiayias et al. (CCS’13) and Boyle et al. (PKC’14), who call them delegatable PRFs and functional PRFs, respectively. In a standard VRF the secret key sk allows one to evaluate a pseudorandom function at any point of its domain; in addition, it enables computation of a non-interactive proof that the function value was computed correctly. In a constrained VRF from the key sk one can derive constrained keys sk S for subsets S of the domain, which allow computation of function values and proofs only at points in S.
After formally defining constrained VRFs, we derive instantiations from the multilinear-maps-based constrained PRFs by Boneh and Waters, yielding a VRF with constrained keys for any set that can be decided by a polynomial-size circuit. Our VRFs have the same function values as the Boneh-Waters PRFs and are proved secure under the same hardness assumption, showing that verifiability comes at no cost. Constrained (functional) VRFs were stated as an open problem by Boyle et al.
Keywords
Random Function Random Oracle Pseudorandom Function Input Wire Common Reference StringPreview
Unable to display preview. Download preview PDF.
References
- [ACF13]Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: Relations to identity-based key encapsulation and new constructions. Journal of Cryptology, 1–50 (2013)Google Scholar
- [BB04a]Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- [BB04b]Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- [BCKL09]Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-Cash and Simulatable VRFs Revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- [BF14]Bellare, M., Fuchsbauer, G.: Policy-Based Signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- [BGI14]Boyle, E., Goldwasser, S., Ivan, I.: Functional Signatures and Pseudorandom Functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- [BGRV09]Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak Verifiable Random Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 558–576. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- [BHR12]Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (October 2012)Google Scholar
- [BMR10]Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom functions with improved efficiency from the augmented cascade. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp. 131–140. ACM Press (October 2010)Google Scholar
- [BR93]Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press (November 1993)Google Scholar
- [BS02]Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemporary Mathematics 324, 71–90 (2002), http://eprint.iacr.org/2002/080 CrossRefMathSciNetGoogle Scholar
- [BW13]Boneh, D., Waters, B.: Constrained Pseudorandom Functions and Their Applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- [CDNO97]Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable Encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- [CL07]Chase, M., Lysyanskaya, A.: Simulatable VRFs with Applications to Multi-theorem NIZK. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- [CLT13]Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical Multilinear Maps over the Integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- [Dod03]Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- [DY05]Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- [FKPR14]Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of constrained prfs. Cryptology ePrint Archive, Report 2014/416 (2014), http://eprint.iacr.org/
- [FS12]Fiore, D., Schröder, D.: Uniqueness Is a Different Story: Impossibility of Verifiable Random Functions from Trapdoor Permutations. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 636–653. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- [Fuc14]Fuchsbauer, G.: Constrained verifiable random functions. Cryptology ePrint Archive (2014), http://eprint.iacr.org/
- [GGH13a]Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- [GGH+13b]Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (October 2013)Google Scholar
- [GGH+13c]Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-Based Encryption for Circuits from Multilinear Maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- [GGM86]Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)CrossRefMathSciNetGoogle Scholar
- [HSW14]Hohenberger, S., Sahai, A., Waters, B.: Replacing a Random Oracle: Full Domain Hash from Indistinguishability Obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- [HW10]Hohenberger, S., Waters, B.: Constructing Verifiable Random Functions with Large Input Spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–672. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- [KPTZ13]Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press (November 2013)Google Scholar
- [Lis05]Liskov, M.: Updatable Zero-Knowledge Databases. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- [Lys02]Lysyanskaya, A.: Unique Signatures and Verifiable Random Functions from the DH-DDH Separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- [MR01]Micali, S., Reyzin, L.: Soundness in the Public-Key Model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- [MR02]Micali, S., Rivest, R.L.: Micropayments Revisited. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 149–163. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- [MRV99]Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS, pp. 120–130. IEEE Computer Society Press (October 1999)Google Scholar
- [NR97]Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press (October 1997)Google Scholar
- [SW14]Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: 46th ACM STOC, pp. 475–484. ACM Press (2014)Google Scholar