Advertisement

Program Obfuscation via Multilinear Maps

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8642)

Abstract

Recent proposals for plausible candidate constructions of multilinear maps and obfuscation have radically transformed what we imagined to be possible in cryptography. For over a decade cryptographers had been very skeptical about the existence of such objects. In this article, we provide a very brief introduction to these results and some of their interesting consequences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABG+13]
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013), http://eprint.iacr.org/2013/689
  2. [BCP14]
    Boyle, E., Chung, K.-M., Pass, R.: On Extractability Obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. [Bei11]
    Beimel, A.: Secret-sharing schemes: A survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. [BGI+01]
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. [BGK+14]
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting Obfuscation against Algebraic Attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. [BR14]
    Brakerski, Z., Rothblum, G.N.: Virtual Black-Box Obfuscation for All Circuits via Generic Graded Encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. [BS02]
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Cryptology ePrint Archive, Report 2002/080 (2002), http://eprint.iacr.org/2002/080
  8. [BSW11]
    Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. [BZ13]
    Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/642 (2013), http://eprint.iacr.org/2013/642
  10. [CLT13]
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical Multilinear Maps over the Integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. [DH76]
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  12. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher. In: 41st ACM STOC, pp. 169–178. ACM Press (May/June 2009)Google Scholar
  13. [GGG+14]
    Goldwasser, S., Dov Gordon, S., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input Functional Encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. [GGH13a]
    Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. [GGH+13b]
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (October 2013)Google Scholar
  16. [GGHR14]
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-Round Secure MPC from Indistinguishability Obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. [GGSW13]
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. In: 45th ACM STOC. ACM Press, pp. 467–476 (June 2013)Google Scholar
  18. [GJKS13]
    Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized functionalities. Cryptology ePrint Archive, Report 2013/729 (2013), http://eprint.iacr.org/2013/729
  19. [GR07]
    Goldwasser, S., Rothblum, G.N.: On Best-Possible Obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. [Had00]
    Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. [Jou04]
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology 17(4), 263–276 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  22. [O’N10]
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010), http://eprint.iacr.org/2010/556
  23. [RSA78]
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature and public-key cryptosystems. Communications of the Association for Computing Machinery 21(2), 120–126 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  24. [Rud89]
    Rudich, S.: Unpublished (1989)Google Scholar
  25. [SW14]
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press (May/June 2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.IBM T.J. WatsonUSA

Personalised recommendations