Obfuscation ⇒ (IND-CPA Security \(\not\Rightarrow\) Circular Security)
- 978 Downloads
Abstract
Circular security is an important notion for public-key encryption schemes and is needed by several cryptographic protocols. In circular security the adversary is given an extra “hint” consisting of a cycle of encryption of secret keys i.e., \(\left(E_{pk_1}(sk_2),\ldots, E_{pk_n}(sk_1)\right)\). A natural question is whether every IND-CPA encryption scheme is also circular secure. It is trivial to see that this is not the case when n = 1. In 2010 a separation for n = 2 was shown by [ABBC10,GH10] under standard assumptions in bilinear groups.
In this paper we finally settle the question showing that for every n there exists an IND-CPA secure scheme which is not n-circular secure.
Our result relies on the recent progress in cryptographic obfuscation.
Keywords
Encryption Scheme Homomorphic Encryption Oracle Access Cryptology ePrint Archive IACR Cryptology ePrint ArchivePreview
Unable to display preview. Download preview PDF.
References
- [ABBC10]Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- [BG10]Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- [BGI+01]Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- [BGI+12]Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)CrossRefMathSciNetGoogle Scholar
- [BGK11]Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- [BHHO08]Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- [BR14]Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- [BRS02]Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- [BZ14]Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. CRYPTO 2014. Cryptology ePrint Archive, Report 2013/642 (2014), http://eprint.iacr.org/
- [CD08]Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- [CGH12]Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 540–557. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- [CL01]Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- [CRV10]Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- [Gen09]Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
- [GGH13a]Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- [GGH+13b]Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)Google Scholar
- [GGHR14]Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- [GH10]Green, M., Hohenberger, S.: CPA and CCA-secure encryption systems that are not 2-circular secure. IACR Cryptology ePrint Archive 2010, 144 (2010)Google Scholar
- [Hof13]Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- [HRSV11]Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. J. Cryptology 24(4), 694–719 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
- [HSW14]Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- [KNY14]Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2014/213 (2014), http://eprint.iacr.org/
- [KRW13]Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary length key cycles. Cryptology ePrint Archive, Report 2013/683 (2013), http://eprint.iacr.org/
- [Rot13]Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- [SW14]Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryption, and more. In: STOC (2014)Google Scholar
- [Wee05]Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)Google Scholar