Advertisement

Obfuscation ⇒ (IND-CPA Security \(\not\Rightarrow\) Circular Security)

  • Antonio Marcedone
  • Claudio Orlandi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8642)

Abstract

Circular security is an important notion for public-key encryption schemes and is needed by several cryptographic protocols. In circular security the adversary is given an extra “hint” consisting of a cycle of encryption of secret keys i.e.,  \(\left(E_{pk_1}(sk_2),\ldots, E_{pk_n}(sk_1)\right)\). A natural question is whether every IND-CPA encryption scheme is also circular secure. It is trivial to see that this is not the case when n = 1. In 2010 a separation for n = 2 was shown by [ABBC10,GH10] under standard assumptions in bilinear groups.

In this paper we finally settle the question showing that for every n there exists an IND-CPA secure scheme which is not n-circular secure.

Our result relies on the recent progress in cryptographic obfuscation.

Keywords

Encryption Scheme Homomorphic Encryption Oracle Access Cryptology ePrint Archive IACR Cryptology ePrint Archive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABBC10]
    Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. [BG10]
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. [BGI+01]
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. [BGI+12]
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)CrossRefMathSciNetGoogle Scholar
  5. [BGK11]
    Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. [BHHO08]
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. [BR14]
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. [BRS02]
    Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. [BZ14]
    Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. CRYPTO 2014. Cryptology ePrint Archive, Report 2013/642 (2014), http://eprint.iacr.org/
  10. [CD08]
    Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. [CGH12]
    Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 540–557. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. [CL01]
    Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. [CRV10]
    Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  15. [GGH13a]
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. [GGH+13b]
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)Google Scholar
  17. [GGHR14]
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. [GH10]
    Green, M., Hohenberger, S.: CPA and CCA-secure encryption systems that are not 2-circular secure. IACR Cryptology ePrint Archive 2010, 144 (2010)Google Scholar
  19. [Hof13]
    Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. [HRSV11]
    Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. J. Cryptology 24(4), 694–719 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. [HSW14]
    Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. [KNY14]
    Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2014/213 (2014), http://eprint.iacr.org/
  23. [KRW13]
    Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary length key cycles. Cryptology ePrint Archive, Report 2013/683 (2013), http://eprint.iacr.org/
  24. [Rot13]
    Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. [SW14]
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryption, and more. In: STOC (2014)Google Scholar
  26. [Wee05]
    Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Antonio Marcedone
    • 1
    • 2
  • Claudio Orlandi
    • 3
  1. 1.Cornell UniversityUSA
  2. 2.Scuola Superiore di CataniaUniversity of CataniaItaly
  3. 3.Aarhus UniversityDenmark

Personalised recommendations