Advertisement

On Adaptively Secure Protocols

  • Muthuramakrishnan Venkitasubramaniam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8642)

Abstract

Adaptive security captures the capability of an adversary to adaptively affect a system during the course of its computation based on partial information gathered. In this work, we explore the theoretical complexity of achieving adaptive security in two settings:

  1. 1

    Adaptive UC-Secure Computation: We provide a round-efficient compiler that transforms any stand-alone semi-honest adaptively secure multiparty computation to adaptive UC-security. Recently, Dana et. al (Asiacrypt 2013) showed how to acheive adaptive UC-security in any trusted setup under minimal assumptions. They achieve this by constructing an O(n)-round adaptively secure concurrent non-malleable commitment scheme. The main contribution of our work shows how to achieve the same in O(1)-rounds.

     
  2. 2

    Zero-Knowledge with Adaptive Inputs: Lin and Pass in (TCC 2011) gave first constructions of concurrent non-malleable zero-know-ledge proofs secure w.r.t. adaptively chosen inputs in the plain model in a restricted setting, namely, where the adversary can only ask for proofs of true (adaptively-chosen) statements. We extend their definition to the fully-adaptive setting and show how to construct a protocol that satisfies this definition. As an independent contribution we provide a simple and direct compilation of any semi-honest secure protocol to a fully concurrently secure protocol under polynomial-time assumptions in the Angel-Based UC-Security.

     

Keywords

Secure Protocol Commitment Scheme Minimal Assumption Reference String Secure Multiparty Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Blu86]
    Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, pp. 1444–1451 (1986)Google Scholar
  2. [BPS06]
    Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. In: FOCS, pp. 345–354 (2006)Google Scholar
  3. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  4. [CDSMW09]
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. [CF01]
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. [CFGN96]
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: STOC, pp. 639–648 (1996)Google Scholar
  7. [CIO98]
    Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable commitment. In: STOC, pp. 141–150 (1998)Google Scholar
  8. [CKL03]
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. [CKOS01]
    Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  11. [CLP10]
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)Google Scholar
  12. [CVZ10]
    Cao, Z., Visconti, I., Zhang, Z.: Constant-round concurrent non-malleable statistically binding commitments and decommitments. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 193–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. [DDN00]
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. [DM00]
    Dodis, Y., Micali, S.: Parallel reducibility for information-theoretically secure computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 74–92. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. [DN00]
    Damgård, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. [DN02]
    Damgård, I.B., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. [DNS04]
    Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  18. [DSMRV11]
    Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive and concurrent secure computation from new notions of non-malleability. IACR Cryptology ePrint Archive, 2011:611 (2011)Google Scholar
  19. [DSMRV13]
    Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive and concurrent secure computation from new adaptive, non-malleable commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 316–336. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. [GLP+12]
    Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. Cryptology ePrint Archive, Report 2012/652 (2012)Google Scholar
  21. [GMR89]
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  22. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  23. [GO07]
    Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. [Goy11]
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: STOC, pp. 695–704 (2011)Google Scholar
  25. [Lin03]
    Lindell, Y.: Bounded-concurrent secure two-party computation without setup assumptions. In: STOC, pp. 683–692 (2003)Google Scholar
  26. [LP11a]
    Lin, H., Pass, R.: Concurrent non-malleable zero knowledge with adaptive inputs. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 274–292. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. [LP11b]
    Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: STOC, pp. 705–714 (2011)Google Scholar
  28. [LPTV10]
    Lin, H., Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent non-malleable zero knowledge proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 429–446. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. [LPV08]
    Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. [LPV09]
    Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent security: universal composability from stand-alone non-malleability. In: STOC, pp. 179–188 (2009)Google Scholar
  31. [LPV12]
    Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 699–717. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. [LZ09]
    Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure oblivious transfer. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 183–201. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. [OPV06]
    Ostrovsky, R., Persiano, G., Visconti, I.: Concurrent non-malleable witness indistinguishability and its applications. Electronic Colloquium on Computational Complexity (ECCC) 13(095) (2006)Google Scholar
  34. [OPV08]
    Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable zero knowledge in the bare public-key model. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 548–559. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. [OPV09]
    Ostrovsky, R., Persiano, G., Visconti, I.: Simulation-based concurrent non-malleable commitments and decommitments. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 91–108. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. [Pas04]
    Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: STOC, pp. 232–241 (2004)Google Scholar
  37. [PR05]
    Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS, pp. 563–572 (2005)Google Scholar
  38. [PS04]
    Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: STOC, pp. 242–251 (2004)Google Scholar
  39. [PW01]
    Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission. In: IEEE Symposium on Security and Privacy, p. 184 (2001)Google Scholar
  40. [Sah99]
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)Google Scholar
  41. [SCO+01]
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Muthuramakrishnan Venkitasubramaniam
    • 1
  1. 1.University of RochesterRochesterUSA

Personalised recommendations