Advertisement

An Empirical Study and Some Improvements of the MiniMac Protocol for Secure Computation

  • Ivan Damgård
  • Rasmus Lauritsen
  • Tomas Toft
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8642)

Abstract

Recent developments in Multi-party Computation (MPC) has resulted in very efficient protocols for dishonest majority in the preprocessing model. In particular, two very promising protocols for Boolean circuits have been proposed by Nielsen et al. (nicknamed TinyOT) and by Damgård and Zakarias (nicknamed MiniMac). While TinyOT has already been implemented, we present in this paper the first implementation of MiniMac, using the same platform as the existing TinyOT implementation. We also suggest several improvements of MiniMac, both on the protocol design and implementation level. In particular, we suggest a modification of MiniMac that achieves increased parallelism at no extra communication cost. This gives an asymptotic improvement of the original protocol as well as an 8-fold speed-up of our implementation. We compare the resulting protocol to TinyOT for the case of secure computation in parallel of a large number of AES encryptions and find that it performs better than results reported so far on TinyOT, on the same hardware.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)Google Scholar
  2. 2.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Conte, S.D., De Boor, C.: Elementary Numerical Analysis: An Algorithmic Approach. International series in pure and applied mathematics. McGraw-Hill (1980)Google Scholar
  4. 4.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math. comput. 19(90), 297–301 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: Breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Zakarias, S.: Constant-overhead secure computation of boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 621–641. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure mpc with dishonest majority. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 549–560. ACM (2013)Google Scholar
  9. 9.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Rasmus Lauritsen
    • 1
  • Tomas Toft
    • 1
  1. 1.Department of Computer ScienceAarhus UniversityDenmark

Personalised recommendations