Advertisement

Faster Maliciously Secure Two-Party Computation Using the GPU

  • Tore Kasper Frederiksen
  • Thomas P. Jakobsen
  • Jesper Buus Nielsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8642)

Abstract

We present a new protocol for maliciously secure two-party computation based on cut-and-choose of garbled circuits using the recent idea of “forge-and-loose”, which eliminates around a factor 3 of garbled circuits that needs to be constructed and evaluated. Our protocol introduces a new way to realize the “forge-and-loose” approach, which avoids an auxiliary secure two-party computation protocol, does not rely on any number theoretic assumptions and parallelizes well in a same instruction, multiple data (SIMD) framework.

With this approach we prove our protocol universally composable-secure against a malicious adversary assuming access to oblivious transfer, commitment and coin-tossing functionalities in the random oracle model.

Finally, we construct, and benchmark, a SIMD implementation of this protocol using a GPU as a massive SIMD device. The findings compare favorably with all previous implementations of maliciously secure, two-party computation.

Keywords

Hash Function Commitment Scheme Random Oracle Model Oblivious Transfer Boolean Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Brandão, L.T.A.N.: Secure two-party computation with reusable bit-commitments, via a cut-and-choose with forge-and-lose technique - (extended abstract). In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 441–463. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)Google Scholar
  5. 5.
    Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: Breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Damgård, I., Zakarias, S.: Constant-overhead secure computation of boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 621–641. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B.: Faster maliciously secure two-party computation using the GPU. IACR Cryptology ePrint Archive, 2014:270 (2014)Google Scholar
  10. 10.
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Minilego: Efficient secure two-party computation from general assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party computation using the GPU. IACR Cryptology ePrint Archive, 2013:46 (2013)Google Scholar
  12. 12.
    Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Hazay, C., Lindell, Y.: Efficient Secure Two-party Protocols: Techniques and Constructions. Information security and cryptography. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: Tool for automating secure two-party computations. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 451–462. ACM (2010)Google Scholar
  15. 15.
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium. USENIX Association (2011)Google Scholar
  16. 16.
    Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose. IACR Cryptology ePrint Archive, 2013:81 (2013)Google Scholar
  17. 17.
    Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual execution. In: IEEE Symposium on Security and Privacy, pp. 272–284. IEEE Computer Society (2012)Google Scholar
  18. 18.
    Husted, N., Myers, S., Shelat, A., Grubbs, P.: GPU and CPU parallelization of honest-but-curious secure two-party computation. In: Payne Jr., C.N. (ed.) ACSAC, pp. 169–178. ACM (2013)Google Scholar
  19. 19.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 21–30. ACM (2007)Google Scholar
  20. 20.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s garbled circuit construction. In: Proceedings of 27th Symposium on Information Theory in the Benelux, pp. 283–290 (2006)Google Scholar
  23. 23.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Kreuter, B., Shelat, A., Shen, C.-H.: Towards billion-gate secure computation with malicious adversaries. IACR Cryptology ePrint Archive, 2012:179 (2012)Google Scholar
  25. 25.
    Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. IACR Cryptology ePrint Archive, 2013:79 (2013)Google Scholar
  26. 26.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: More efficient and secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 36–53. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Shelat, A., Shen, C.-H.: Fast two-party secure computation with minimal assumptions. IACR Cryptology ePrint Archive, 2013:196 (2013)Google Scholar
  35. 35.
    Shelat, A., Shen, C.-H.: Two-output secure computation with malicious adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  36. 36.
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164. IEEE Computer Society (1982)Google Scholar
  37. 37.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167. IEEE Computer Society (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tore Kasper Frederiksen
    • 1
  • Thomas P. Jakobsen
    • 1
  • Jesper Buus Nielsen
    • 1
  1. 1.Department of Computer ScienceAarhus UniversityAarhusDenmark

Personalised recommendations