Universally Composable Non-Interactive Key Exchange
- 7 Citations
- 946 Downloads
Abstract
We consider the notion of a non-interactive key exchange (NIKE). A NIKE scheme allows a party A to compute a common shared key with another party B from B’s public key and A’s secret key alone. This computation requires no interaction between A and B, a feature which distinguishes NIKE from regular (i.e., interactive) key exchange not only quantitatively, but also qualitatively.
Our first contribution is a formalization of NIKE protocols as ideal functionalities in the Universal Composability (UC) framework. As we will argue, existing NIKE definitions (all of which are game-based) do not support a modular analysis either of NIKE schemes themselves, or of the use of NIKE schemes. We provide a simple and natural UC-based NIKE definition that allows for a modular analysis both of NIKE schemes and their use in larger protocols.
We investigate the properties of our new definition, and in particular its relation to existing game-based NIKE definitions. We find that
(a) game-based NIKE security is equivalent to UC-based NIKE security against static corruptions, and
(b) UC-NIKE security against adaptive corruptions cannot be achieved without additional assumptions (but can be achieved in the random oracle model).
Our results suggest that our UC-based NIKE definition is a useful and simple abstraction of non-interactive key exchange.
Keywords
non-interactive key exchange universal composabilityPreview
Unable to display preview. Download preview PDF.
References
- 1.Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195. IEEE Computer Society Press (2004)Google Scholar
- 2.Barker, E., Johnson, D., Smid, M.: NIST special publication 800-56A: Recommendation for pair-wise key establishment schemes using discrete logarithm cryptography, revised (2007)Google Scholar
- 3.Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)Google Scholar
- 4.Canetti, R.: Universally composable signature, certification, and authentication. In: CSFW 2004, p. 219. IEEE Computer Society (2004)Google Scholar
- 5.Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive (2005), http://eprint.iacr.org/2000/067
- 6.Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 7.Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 8.Capar, C., Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.: Signal-flow-based analysis of wireless security protocols. Inf. Comput. 226, 37–56 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
- 9.Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 10.Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
- 11.Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability of authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 12.Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash functions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 13.Freire, E.S., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 14.Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T., Reidt, S., Wolthusen, S.D.: Strongly-resilient and non-interactive hierarchical key-agreement in mANETs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 49–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 15.Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Cryptology ePrint Archive (2011), http://eprint.iacr.org/2011/303
- 16.Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)CrossRefGoogle Scholar
- 17.Kidron, D., Lindell, Y.: Impossibility results for universal composability in public-key models and with fixed inputs. Journal of Cryptology 24(3), 517–544 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
- 18.Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 19.Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS 2000, Okinawa, Japan (2000)Google Scholar
- 20.Freire, E.S.V., Hesse, J., Hofheinz, D.: Universally Composable Non-Interactive Key Exchange. Cryptology ePrint Archive (2014), http://eprint.iacr.org/2014/528