Advertisement

Semi-adaptive Attribute-Based Encryption and Improved Delegation for Boolean Formula

  • Jie Chen
  • Hoeteck Wee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8642)

Abstract

We consider semi-adaptive security for attribute-based encryption, where the adversary specifies the challenge attribute vector after it sees the public parameters but before it makes any secret key queries. We present two constructions of semi-adaptive attribute-based encryption under static assumptions with short ciphertexts. Previous constructions with short ciphertexts either achieve the weaker notion of selective security, or require parameterized assumptions.

As an application, we obtain improved delegation schemes for Boolean formula with semi-adaptive soundness, where correctness of the computation is guaranteed even if the client’s input is chosen adaptively depending on its public key. Previous delegation schemes for formula achieve one of adaptive soundness, constant communication complexity, or security under static assumptions; we show how to achieve semi-adaptive soundness and the last two simultaneously.

Keywords

Access Structure Boolean Formula Challenge Ciphertext Delegation Scheme Improve Delegation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attrapadung, N.: Dual system encryption via doubly selective security: Framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D., Technion - Israel Institute of Technology (1996)Google Scholar
  4. 4.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chen, J., Wee, H.: Fully (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Chen, J., Wee, H.: Fully (almost) tightly secure IBE from standard assumptions. IACR Cryptology ePrint Archive, Report 2013/803, Preliminary version in [8] (2013)Google Scholar
  10. 10.
    Chen, J., Wee, H.: Dual system groups and its applications — compact HIBE and more. IACR Cryptology ePrint Archive, Report 2014/265, Preliminary version in [8] (2014)Google Scholar
  11. 11.
    Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for boolean formula. IACR Cryptology ePrint Archive, Report 2014/465 (2014)Google Scholar
  12. 12.
    Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 122–140. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: ACM Conference on Computer and Communications Security, pp. 456–465 (2007)Google Scholar
  14. 14.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: ACM Conference on Computer and Communications Security, pp. 501–512 (2012)Google Scholar
  16. 16.
    Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive proofs for muggles. In: STOC, pp. 113–122 (2008)Google Scholar
  20. 20.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98 (2006)Google Scholar
  21. 21.
    Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute based encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference, pp. 102–111 (1993)Google Scholar
  23. 23.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: Verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) Advances in Cryptology - CRYPT0 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)Google Scholar
  35. 35.
    Takashima, K.: Expressive attribute-based encryption with constant-size ciphertexts from the decisional linear assumption. In: SCN Also, Cryptology ePrint Archive, Report 2014/207 (to appear 2014)Google Scholar
  36. 36.
    Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  38. 38.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jie Chen
    • 1
  • Hoeteck Wee
    • 2
  1. 1.Department of Computer Science and TechnologyEast China Normal UniversityChina
  2. 2.École Normale SupérieureParisFrance

Personalised recommendations