Reducing the Overhead of MPC over a Large Population

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8642)


We present a secure honest majority MPC protocol, against a static adversary, which aims to reduce the communication cost in the situation where there are a large number of parties and the number of adversarially controlled parties is relatively small. Our goal is to reduce the usage of point-to-point channels among the parties, thus enabling them to run multiple different protocol executions. Our protocol has highly efficient theoretical communication cost when compared with other protocols in the literature; specifically the circuit-dependent communication cost, for circuits of suitably large depth, is \(\mathcal{O}(|ckt|\kappa^7)\), for security parameter κ and circuit size |ckt|. Our protocol finds application in cloud computing scenario, where the fraction of corrupted parties is relatively small. By minimizing the usage of point-to-point channels, our protocol can enable a cloud service provider to run multiple MPC protocols.


Communication Complexity Defense Advance Research Project Agency Honest Party Byzantine Agreement Secure Multiparty Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, M., Fehr, S.: Adaptively Secure Feldman VSS and Applications to Universally-Composable Threshold Cryptography. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 317–334. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Asharov, G., Lindell, Y.: A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty Computation. IACR Cryptology ePrint Archive 2011, 136 (2011)Google Scholar
  3. 3.
    Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPT0 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communication Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party computation how to run sublinear algorithms in a distributed setting. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Canny, J., Sorkin, S.: Practical large-scale distributed key generation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 138–152. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Choudhury, A.: Breaking the \(\mathcal{O}(n|c|)\) barrier for unconditionally secure asynchronous multiparty computation - (extended abstract). In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 19–37. Springer, Heidelberg (2013)Google Scholar
  10. 10.
    Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable Multiparty Computation with Nearly Optimal Work and Resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Damgård, I., Orlandi, C.: Multiparty Computation for Dishonest Majority: From Passive to Active Security at Low Cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Dani, V., King, V., Movahedi, M., Saia, J.: Brief Announcement: Breaking the O(nm) Bit Barrier, Secure Multiparty Computation with a Static Adversary. In: Principles of Distributed Computing, PODC 2012, pp. 227–228 (2012)Google Scholar
  13. 13.
    Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: Efficient asynchronous secure multiparty computation. In: Chatterjee, M., Cao, J.-N., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 242–256. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Feige, U.: Noncryptographic selection protocols. In: FOCS, pp. 142–153 (1999)Google Scholar
  15. 15.
    Fitzi, M., Hirt, M.: Optimally Efficient Multi-valued Byzantine Agreement. In: Principles of Distributed Computing, PODC 2006, pp. 163–168. ACM (2006)Google Scholar
  16. 16.
    Franklin, M.K., Yung, M.: Communication Complexity of Secure Computation (Extended Abstract). In: Symposium on Theory of Computing, STOC 1992, pp. 699–710. ACM (1992)Google Scholar
  17. 17.
    Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast Asynchronous Byzantine Agreement and Leader Election with Full Information. ACM Transactions on Algorithms 6(4) (2010)Google Scholar
  18. 18.
    King, V., Lonargan, S., Saia, J., Trehan, A.: Load Balanced Scalable Byzantine Agreement through Quorum Building, with Information. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 203–214. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    King, V., Saia, J.: Breaking the O(n 2) Bit Barrier: Scalable Byzantine Agreement with an Adaptive Adversary. J. ACM 58(4), 18 (2011)CrossRefMathSciNetGoogle Scholar
  20. 20.
    King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable Leader Election. In: SODA, pp. 990–999 (2006)Google Scholar
  21. 21.
    Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPT0 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  22. 22.
    Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.IIIT BangaloreIndia
  2. 2.Dept. of Computer Science & AutomationIISc BangaloreIndia
  3. 3.Dept. of Computer ScienceUni. BristolUnited Kingdom

Personalised recommendations