Reducing the Overhead of MPC over a Large Population
- 1 Citations
- 920 Downloads
Abstract
We present a secure honest majority MPC protocol, against a static adversary, which aims to reduce the communication cost in the situation where there are a large number of parties and the number of adversarially controlled parties is relatively small. Our goal is to reduce the usage of point-to-point channels among the parties, thus enabling them to run multiple different protocol executions. Our protocol has highly efficient theoretical communication cost when compared with other protocols in the literature; specifically the circuit-dependent communication cost, for circuits of suitably large depth, is \(\mathcal{O}(|ckt|\kappa^7)\), for security parameter κ and circuit size |ckt|. Our protocol finds application in cloud computing scenario, where the fraction of corrupted parties is relatively small. By minimizing the usage of point-to-point channels, our protocol can enable a cloud service provider to run multiple MPC protocols.
Keywords
Communication Complexity Defense Advance Research Project Agency Honest Party Byzantine Agreement Secure Multiparty ComputationPreview
Unable to display preview. Download preview PDF.
References
- 1.Abe, M., Fehr, S.: Adaptively Secure Feldman VSS and Applications to Universally-Composable Threshold Cryptography. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 317–334. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 2.Asharov, G., Lindell, Y.: A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty Computation. IACR Cryptology ePrint Archive 2011, 136 (2011)Google Scholar
- 3.Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPT0 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)Google Scholar
- 4.Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communication Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 5.Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 6.Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party computation how to run sublinear algorithms in a distributed setting. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 7.Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 8.Canny, J., Sorkin, S.: Practical large-scale distributed key generation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 138–152. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 9.Choudhury, A.: Breaking the \(\mathcal{O}(n|c|)\) barrier for unconditionally secure asynchronous multiparty computation - (extended abstract). In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 19–37. Springer, Heidelberg (2013)Google Scholar
- 10.Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable Multiparty Computation with Nearly Optimal Work and Resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 11.Damgård, I., Orlandi, C.: Multiparty Computation for Dishonest Majority: From Passive to Active Security at Low Cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 12.Dani, V., King, V., Movahedi, M., Saia, J.: Brief Announcement: Breaking the O(nm) Bit Barrier, Secure Multiparty Computation with a Static Adversary. In: Principles of Distributed Computing, PODC 2012, pp. 227–228 (2012)Google Scholar
- 13.Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: Efficient asynchronous secure multiparty computation. In: Chatterjee, M., Cao, J.-N., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 242–256. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- 14.Feige, U.: Noncryptographic selection protocols. In: FOCS, pp. 142–153 (1999)Google Scholar
- 15.Fitzi, M., Hirt, M.: Optimally Efficient Multi-valued Byzantine Agreement. In: Principles of Distributed Computing, PODC 2006, pp. 163–168. ACM (2006)Google Scholar
- 16.Franklin, M.K., Yung, M.: Communication Complexity of Secure Computation (Extended Abstract). In: Symposium on Theory of Computing, STOC 1992, pp. 699–710. ACM (1992)Google Scholar
- 17.Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast Asynchronous Byzantine Agreement and Leader Election with Full Information. ACM Transactions on Algorithms 6(4) (2010)Google Scholar
- 18.King, V., Lonargan, S., Saia, J., Trehan, A.: Load Balanced Scalable Byzantine Agreement through Quorum Building, with Information. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 203–214. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 19.King, V., Saia, J.: Breaking the O(n 2) Bit Barrier: Scalable Byzantine Agreement with an Adaptive Adversary. J. ACM 58(4), 18 (2011)CrossRefMathSciNetGoogle Scholar
- 20.King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable Leader Election. In: SODA, pp. 990–999 (2006)Google Scholar
- 21.Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPT0 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
- 22.Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)CrossRefzbMATHMathSciNetGoogle Scholar