Advertisement

Communication-Efficient MPC for General Adversary Structures

  • Joshua Lampkins
  • Rafail Ostrovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8642)

Abstract

A multiparty computation (MPC) protocol allows a set of players to compute a function of their inputs while keeping the inputs private and at the same time securing the correctness of the output. Most MPC protocols assume that the adversary can corrupt up to a fixed fraction of the number of players. Hirt and Maurer initiated the study of MPC under more general corruption patterns, in which the adversary is allowed to corrupt any set of players in some pre-defined collection of sets [1]. In this paper we consider this important direction and present improved communication complexity of MPC protocols for general adversary structures. More specifically, ours is the first unconditionally secure protocol that achieves linear communication in the size of Monotone Span Program representing the adversary structure in the malicious setting against any Q2 adversary structure, whereas all previous protocols were at least cubic.

Keywords

Multiparty Computation Secret Sharing General Adversaries Q2 Adversary Structures Monotone Span Program 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in general multiparty computations. In: Proc. PODC (1997)Google Scholar
  2. 2.
    Fitzi, M., Hirt, M., Maurer, U.M.: General adversaries in unconditional multi-party computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Smith, A., Stiglic, A.: Multiparty computation unconditionally secure against Q2 adversary structures. CoRR cs.CR/9902010 (1999)Google Scholar
  5. 5.
    Cramer, R., Damgård, I.B., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against an adaptive adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference, pp. 102–111 (1993)Google Scholar
  7. 7.
    Beaver, D., Wool, A.: Quorum-based secure multi-party computation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 375–390. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Maurer, U.: Secure multi-party computation made simple. Discrete Applied Mathematics 154(2), 370–381 (2006), Coding and CryptographyGoogle Scholar
  9. 9.
    Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE: Unconditional and computational security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Hirt, M., Tschudi, D.: Efficient general-adversary multi-party computation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 181–200. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 72(9), 56–64 (1989)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC, pp. 73–85 (1989)Google Scholar
  14. 14.
    Lampkins, J., Ostrovsky, R.: Communication-efficient mpc for general adversary structures. Cryptology ePrint Archive, Report 2013/640 (2013), http://eprint.iacr.org/

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joshua Lampkins
    • 1
  • Rafail Ostrovsky
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Computer Science and Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations